mlir-hlo/tests/hlo-legalize-to-linalg.mlir

1208 lines
46 KiB
MLIR

// RUN: mlir-hlo-opt %s -hlo-legalize-to-linalg -split-input-file | FILECHECK_OPTS="" FileCheck %s
// CHECK: #map = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @float_add
func @float_add(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: ^{{[a-z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: f32
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32
// CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = addf %[[ARG0]], %[[ARG1]]
// CHECK: linalg.yield %[[RESULT]]
%0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: integer_add
func @integer_add(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: addi
%0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: complex_add
func @complex_add(%lhs: tensor<2x2xcomplex<f32>>,
%rhs: tensor<2x2xcomplex<f32>>) -> tensor<2x2xcomplex<f32>> {
// CHECK: linalg.generic
// CHECK: complex.add
%0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xcomplex<f32>>,
tensor<2x2xcomplex<f32>>) -> tensor<2x2xcomplex<f32>>
return %0 : tensor<2x2xcomplex<f32>>
}
// -----
// CHECK-LABEL: func @float_mul
func @float_mul(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: mulf
%0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @integer_mul
func @integer_mul(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: muli
%0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: func @float_remainder
func @float_remainder(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: remf
%0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @integer_remainder
func @integer_remainder(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: remi_signed
%0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: func @float_rsqrt
func @float_rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> {
%tensor_result = "mhlo.rsqrt"(%operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32>
// CHECK: linalg.generic
// CHECK: rsqrt
return %tensor_result : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_sub
func @float_sub(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: subf
%0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @integer_sub
func @integer_sub(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: subi
%0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: complex_sub
func @complex_sub(%lhs: tensor<2x2xcomplex<f32>>,
%rhs: tensor<2x2xcomplex<f32>>) -> tensor<2x2xcomplex<f32>> {
// CHECK: linalg.generic
// CHECK: complex.sub
%0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xcomplex<f32>>,
tensor<2x2xcomplex<f32>>) -> tensor<2x2xcomplex<f32>>
return %0 : tensor<2x2xcomplex<f32>>
}
// -----
// CHECK-LABEL: func @float_abs
func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: absf
%0 = "mhlo.abs"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_exp
func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: exp
%0 = "mhlo.exponential"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_log
func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: log
%0 = "mhlo.log"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_log1p
func @float_log1p(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: log1p
%0 = "mhlo.log_plus_one"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_logistic
func @float_logistic(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG:.*]]: f32, %{{.*}}: f32):
// CHECK: %[[C1:.*]] = constant 1.{{.*}}e+00
// CHECK: %[[NEG_ARG:.*]] = negf %[[ARG]]
// CHECK: %[[EXP_NEG_ARG:.*]] = math.exp %[[NEG_ARG]]
// CHECK: %[[ONE_ADD_EXP_NEG_ARG:.*]] = addf %[[C1]], %[[EXP_NEG_ARG]]
// CHECK: %[[RESULT:.*]] = divf %[[C1]], %[[ONE_ADD_EXP_NEG_ARG]]
// CHECK: linalg.yield %[[RESULT]]
%0 = "mhlo.logistic"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_ceil
func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: ceilf
%0 = "mhlo.ceil"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @floor
func @floor(%input: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: floorf
%0 = "mhlo.floor"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_neg
func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: negf
%0 = "mhlo.negate"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_tanh
func @float_tanh(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: tanh
%0 = "mhlo.tanh"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @integer_and
func @integer_and(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: and
%0 = "mhlo.and"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: func @integer_or
func @integer_or(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: or
%0 = "mhlo.or"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: func @integer_xor
func @integer_xor(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: xor
%0 = "mhlo.xor"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-LABEL: func @float_cmp
func @float_cmp(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) {
%0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"}
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1>
return %0 : tensor<2x2xi1>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: i1):
// CHECK-NEXT: %[[RESULT:.*]] = cmpf oeq, %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i1
// -----
// CHECK-LABEL: func @float_cmp_ne
func @float_cmp_ne(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) {
%0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "NE"}
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1>
return %0 : tensor<2x2xi1>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: i1):
// CHECK-NEXT: %[[RESULT:.*]] = cmpf une, %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i1
// -----
// CHECK-LABEL: func @int_cmp
func @int_cmp(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi1> {
%0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "LT"}
: (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi1>)
return %0 : tensor<2x2xi1>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32, %{{.*}}: i1):
// CHECK-NEXT: %[[RESULT:.*]] = cmpi slt, %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i1
// -----
// CHECK-LABEL: func @float_cos
func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: cos
%0 = "mhlo.cosine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @float_sin
func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: sin
%0 = "mhlo.sine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK-LABEL: func @copy
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> {
%0 = "mhlo.copy"(%input) : (tensor<2x4x8xf32>) -> (tensor<2x4x8xf32>)
return %0 : tensor<2x4x8xf32>
}
// CHECK: return [[ARG]] : tensor<2x4x8xf32>
// -----
// CHECK-LABEL: func @is_finte
func @is_finte(%input: tensor<2x2xf32>) -> tensor<2x2xi1> {
%0 = "mhlo.is_finite"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi1>
return %0 : tensor<2x2xi1>
}
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32
// CHECK-NEXT: %[[POS_INF:.+]] = constant 0x7F800000 : f32
// CHECK-NEXT: %[[ABS_X:.+]] = absf %[[OPERAND_IN]] : f32
// CHECK-NEXT: %[[RESULT:.+]] = cmpf one, %[[ABS_X]], %[[POS_INF]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i1
// -----
// CHECK-LABEL: func @select
func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
%0 = "mhlo.select"(%pred, %lhs, %rhs)
: (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> (tensor<2x2xf32>)
return %0 : tensor<2x2xf32>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xf32>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[PRED_IN:.*]]: i1, %[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: %[[RESULT:.*]] = select %[[PRED_IN]], %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2) -> ()>
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @broadcast_scalar
func @broadcast_scalar(%arg: tensor<f32>) -> tensor<4x2x1xf32> {
%0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<f32>) -> tensor<4x2x1xf32>
return %0: tensor<4x2x1xf32>
}
// CHECK: linalg.init_tensor [4, 2, 1] : tensor<4x2x1xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)>
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-LABEL: func @broadcast
func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> {
%0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32>
return %0: tensor<4x2x1x4x?x16xf32>
}
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[D1:.*]] = dim %{{.*}}, %[[C1]] : tensor<4x?x16xf32>
// CHECK: linalg.init_tensor [4, 2, 1, 4, %[[D1]], 16] : tensor<4x2x1x4x?x16xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, 0)>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func @broadcast_in_dim
func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> {
%0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>}
: (tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32>
return %0 : tensor<7x10x6x4x5xf32>
}
// CHECK: linalg.init_tensor [7, 10, 6, 4, 5] : tensor<7x10x6x4x5xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @broadcast_in_dim_with_one_to_one
func @broadcast_in_dim_with_one_to_one(
%operand: tensor<1xf32>) -> tensor<1x5xf32> {
%0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[0]> : tensor<1xi64>}
: (tensor<1xf32>) -> tensor<1x5xf32>
return %0 : tensor<1x5xf32>
}
// CHECK: linalg.init_tensor [1, 5] : tensor<1x5xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2) -> ()>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @broadcast_scalar
func @broadcast_scalar(%operand: tensor<f32>) -> tensor<7x10x6xf32> {
%0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[]> : tensor<0xi64>}
: (tensor<f32>) -> tensor<7x10x6xf32>
return %0 : tensor<7x10x6xf32>
}
// CHECK: linalg.init_tensor [7, 10, 6] : tensor<7x10x6xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d0, d3, d2)>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func @transpose
func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> {
%0 = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>}
: (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32>
return %0 : tensor<3x2x5x9xi32>
}
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// -----
// CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK-LABEL: func @reshape_3D_2D
func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
// -----
// CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
// CHECK-LABEL: func @reshape_4D_2D
func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
// -----
// CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1)>
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
// CHECK-LABEL: func @reshape_2D_4D
func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32>
return %0 : tensor<12x1x42x1xi32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
// -----
// CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func @reshape_3D_4D
func @reshape_3D_4D(%arg0: tensor<1x49x16xf32>) -> tensor<1x784x1x1xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<1x49x16xf32>) -> tensor<1x784x1x1xf32>
return %0 : tensor<1x784x1x1xf32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]]]
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP2]]]
// -----
// CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @reshape_4D_3D
func @reshape_4D_3D(%arg0: tensor<1x8x10x3xf32>) -> tensor<1x240x1xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<1x8x10x3xf32>) -> tensor<1x240x1xf32>
return %0 : tensor<1x240x1xf32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]]]
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP2]]]
// -----
// CHECK-DAG: #[[MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func @reshape1_4D_4D
func @reshape1_4D_4D(%arg0: tensor<4x512x1x1xi32>) -> tensor<1x4x1x512xi32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<4x512x1x1xi32>) -> tensor<1x4x1x512xi32>
return %0 : tensor<1x4x1x512xi32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]]
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]]
// -----
// CHECK-DAG: #[[MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func @reshape2_4D_4D
func @reshape2_4D_4D(%arg0: tensor<4x1x1x1024xi32>) -> tensor<4x1024x1x1xi32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<4x1x1x1024xi32>) -> tensor<4x1024x1x1xi32>
return %0 : tensor<4x1024x1x1xi32>
}
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]]
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]]
// -----
// CHECK-LABEL: func @minf
func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
%0 = "mhlo.minimum"(%lhs, %rhs)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xf32>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: f32):
// CHECK-NEXT: %[[CMP:.*]] = cmpf olt, %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: %[[MIN:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: %[[ISNAN:.*]] = cmpf uno, %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: %[[NAN:.*]] = constant 0x7FC00000 : f32
// CHECK-NEXT: %[[RESULT:.*]] = select %[[ISNAN]], %[[NAN]], %[[MIN]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
// CHECK-LABEL: func @maxi
func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
%0 = "mhlo.maximum"(%lhs, %rhs)
: (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi32>
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32, %{{.*}}: i32):
// CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
// CHECK-DAG: #[[MAP:.*]] = affine_map<() -> ()>
// CHECK-LABEL: func @add_scalar
func @add_scalar(%lhs: tensor<f32>, %rhs: tensor<f32>) -> tensor<f32> {
%0 = "mhlo.add"(%lhs, %rhs) : (tensor<f32>, tensor<f32>) -> tensor<f32>
return %0 : tensor<f32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
// CHECK-NEXT: ^bb0(%[[LHS:.*]]: f32, %[[RHS:.*]]: f32, %{{.*}}: f32):
// CHECK: %[[RESULT:.*]] = addf %[[LHS]], %[[RHS]]
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
func @reshape_collapse_single_dim
(%arg0: tensor<1x28x28x1xf32>) -> tensor<1x784xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32>
return %0 : tensor<1x784xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
// CHECK-LABEL: func @reshape_collapse_single_dim
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]]
// -----
func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32>
return %0 : tensor<2x4x3xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK-LABEL: func @reshape_collapse
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
// -----
func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<2x8xf32>) -> tensor<2x4x2xf32>
return %0 : tensor<2x4x2xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK-LABEL: func @reshape_expand
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]]
// -----
func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<8xf32>) -> tensor<1x4x2xf32>
return %0 : tensor<1x4x2xf32>
}
// CHECK: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @reshape_single_expand
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]]]
// -----
func @reshape_multiple_collapse
(%arg0 : tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> {
%0 = "mhlo.reshape"(%arg0) : (tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32>
return %0 : tensor<1x4x5x6xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5)>
// CHECK-LABEL: func @reshape_multiple_collapse
// CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]]
// -----
// CHECK-LABEL: func @convert_i1_to_f32
func @convert_i1_to_f32(%input: tensor<2x2xi1>) -> tensor<2x2xf32> {
%result = "mhlo.convert"(%input) : (tensor<2x2xi1>) -> tensor<2x2xf32>
return %result : tensor<2x2xf32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i1, %{{.*}}: f32):
// CHECK-NEXT: %[[RESULT:.*]] = uitofp %[[OPERAND_IN]] : i1 to f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
// CHECK-LABEL: func @convert_i32_to_f32
func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> {
%result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xf32>
return %result : tensor<2x2xf32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32, %{{.*}}: f32):
// CHECK-NEXT: %[[RESULT:.*]] = sitofp %[[OPERAND_IN]] : i32 to f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
// CHECK-LABEL: func @convert_i16_to_i32
func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> {
%result = "mhlo.convert"(%input) : (tensor<2x2xi16>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i16, %{{.*}}: i32):
// CHECK-NEXT: %[[RESULT:.*]] = zexti %[[OPERAND_IN]] : i16 to i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
// CHECK-LABEL: func @convert_i32_to_i16
func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> {
%result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi16>
return %result : tensor<2x2xi16>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32, %{{.*}}: i16):
// CHECK-NEXT: %[[RESULT:.*]] = trunci %[[OPERAND_IN]] : i32 to i16
// CHECK-NEXT: linalg.yield %[[RESULT]] : i16
// -----
// CHECK-LABEL: func @convert_f32_to_f64
func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> {
%result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf64>
return %result : tensor<2x2xf64>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32, %{{.*}}: f64):
// CHECK-NEXT: %[[RESULT:.*]] = fpext %[[OPERAND_IN]] : f32 to f64
// CHECK-NEXT: linalg.yield %[[RESULT]] : f64
// -----
// CHECK-LABEL: func @convert_f64_to_f32
func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> {
%result = "mhlo.convert"(%input) : (tensor<2x2xf64>) -> tensor<2x2xf32>
return %result : tensor<2x2xf32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f64, %{{.*}}: f32):
// CHECK-NEXT: %[[RESULT:.*]] = fptrunc %[[OPERAND_IN]] : f64 to f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
// CHECK-LABEL: func @convert_f32_to_i32
func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> {
%result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32, %{{.*}}: i32):
// CHECK-NEXT: %[[RESULT:.*]] = fptosi %[[OPERAND_IN]] : f32 to i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1) -> (d0, -d1 + 2)>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @reverse
func @reverse(%input: tensor<2x3xf32>) -> tensor<2x3xf32> {
%result = "mhlo.reverse"(%input) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<2x3xf32>) -> tensor<2x3xf32>
return %result : tensor<2x3xf32>
}
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// -----
// CHECK: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @iota
func @iota() -> tensor<7x10xf32> {
%result = "mhlo.iota"() {iota_dimension = 1 : i64} : () -> (tensor<7x10xf32>)
return %result : tensor<7x10xf32>
}
// CHECK: linalg.init_tensor
// CHECK: linalg.indexed_generic
// CHECK-SAME: indexing_maps = [#[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[D0:.*]]: index, %[[D1:.*]]: index, %{{.*}}: f32):
// CHECK-NEXT: %[[INT_CAST:.*]] = index_cast %[[D1]] : index to i32
// CHECK-NEXT: %[[FLOAT_CAST:.*]] = sitofp %[[INT_CAST]] : i32 to f32
// CHECK-NEXT: linalg.yield %[[FLOAT_CAST]] : f32
// -----
func @shift_left(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
%result = "mhlo.shift_left"(%lhs, %rhs)
: (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32>
}
// CHECK-LABEL: func @shift_left
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32):
// CHECK-NEXT: %[[RESULT:.*]] = shift_left %[[LHS]], %[[RHS]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @shift_right_arithmetic(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
%result = "mhlo.shift_right_arithmetic"(%lhs, %rhs)
: (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32>
}
// CHECK-LABEL: func @shift_right_arithmetic
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32):
// CHECK-NEXT: %[[RESULT:.*]] = shift_right_signed %[[LHS]], %[[RHS]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @shift_right_logical(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
%result = "mhlo.shift_right_logical"(%lhs, %rhs)
: (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32>
}
// CHECK-LABEL: func @shift_right_logical
// CHECK: linalg.init_tensor
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32):
// CHECK-NEXT: %[[RESULT:.*]] = shift_right_unsigned %[[LHS]], %[[RHS]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
// CHECK-LABEL: func @constant
func @constant() {
%result = "mhlo.constant"() {
value = dense<10> : tensor<i32>
} : () -> (tensor<i32>)
return
}
// CHECK: %[[CONSTANT:.*]] = constant dense<10> : tensor<i32>
// -----
// CHECK: #map = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @float_pow
func @float_pow(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic
// CHECK: ^{{[a-z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: f32
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32
// CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = math.powf %[[ARG0]], %[[ARG1]]
// CHECK: linalg.yield %[[RESULT]]
%0 = "mhlo.power"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32>
}
// -----
// CHECK: #map = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @integer_pow
func @integer_pow(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic
// CHECK: ^{{[a-z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: i32
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: i32
// CHECK: %[[FOR_RESULT:[a-zA-Z0-9_]*]]:3 = scf.for {{.*}} to %c6 step %c1
// CHECK-SAME: iter_args(
// CHECK-SAME: %[[ITER0:.*]] = %c1
// CHECK-SAME: %[[ITER1:.*]] = %[[ARG0]]
// CHECK-SAME: %[[ITER2:.*]] = %[[ARG1]]
// CHECK-SAME: ) -> (i32, i32, i32) {
// CHECK: %[[AND:[a-zA-Z0-9_]*]] = and %[[ITER2]], %c1
// CHECK: %[[COND:[a-zA-Z0-9_]*]] = cmpi eq, %[[AND]], %c1
// CHECK: %[[MUL:[a-zA-Z0-9_]*]] = muli %[[ITER0]], %[[ITER1]]
// CHECK: %[[ACCUM:[a-zA-Z0-9_]*]] = select %[[COND]], %[[MUL]], %[[ITER0]]
// CHECK: %[[BASE:[a-zA-Z0-9_]*]] = muli %[[ITER1]], %[[ITER1]]
// CHECK: %[[EXP:[a-zA-Z0-9_]*]] = shift_right_unsigned %[[ITER2]], %c1
// CHECK: scf.yield %[[ACCUM]], %[[BASE]], %[[EXP]]
// CHECK: %[[RHS_PARITY:.*]] = remi_signed %[[ARG1]], %c2
// CHECK: %[[RHS_EVEN:.*]] = cmpi eq, %[[RHS_PARITY]], %c0
// CHECK: %[[RHS_NEG:.*]] = cmpi slt, %[[ARG1]], %c0
// CHECK: %[[LHS_ONE:.*]] = cmpi eq, %[[ARG0]], %c1
// CHECK: %[[LHS_NEG_ONE:.*]] = cmpi eq, %[[ARG0]], %c-1
// CHECK: %[[VAL5:.*]] = select %[[LHS_ONE]], %c1_i32, %c0
// CHECK: %[[VAL6:.*]] = select %[[RHS_EVEN]], %c1{{.*}}, %c-1
// CHECK: %[[VAL7:.*]] = select %[[LHS_NEG_ONE]], %[[VAL6]], %[[VAL5]]
// CHECK: %[[RESULT:.*]] = select %[[RHS_NEG]], %[[VAL7]], %[[FOR_RESULT]]#0
// CHECK: linalg.yield %[[RESULT]]
%0 = "mhlo.power"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0) -> ()>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @dynamic_broadcast_in_dim(
// CHECK-SAME: [[SHAPE:%.*]]: tensor<1xindex>
func @dynamic_broadcast_in_dim(%shape: tensor<1xindex>) -> tensor<?xf32> {
%cst = mhlo.constant dense<0x7F800000> : tensor<f32>
%result = "mhlo.dynamic_broadcast_in_dim"(%cst, %shape) {
broadcast_dimensions = dense<> : tensor<0xi64>
} : (tensor<f32>, tensor<1xindex>) -> tensor<?xf32>
return %result : tensor<?xf32>
}
// CHECK: [[CST:%.*]] = constant
// CHECK: [[INIT:%.*]] = linalg.init_tensor
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-SAME: ins([[CST]] : tensor<f32>) outs([[INIT]] : tensor<?xf32>)
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %[[RESULT:.*]]: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
// -----
func @dot_matmul(%arg0: tensor<2x3xf32>,
%arg1: tensor<3x?xf32>) -> tensor<2x?xf32> {
%0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xf32>,
tensor<3x?xf32>) -> tensor<2x?xf32>
return %0 : tensor<2x?xf32>
}
// CHECK: func @dot_matmul(%[[ARG0:.*]]: tensor<2x3xf32>, %[[ARG1:.*]]: tensor<3x?xf32>)
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[D1:.*]] = dim %[[ARG1]], %[[C1]]
// CHECK: %[[INIT:.*]] = linalg.init_tensor [2, %[[D1]]]
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]]
// CHECK: linalg.matmul
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3xf32>, tensor<3x?xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<2x?xf32>)
// -----
func @dot_matvec(%arg0: tensor<?x3xf32>,
%arg1: tensor<3xf32>) -> tensor<?xf32> {
%0 = "mhlo.dot"(%arg0, %arg1) : (tensor<?x3xf32>,
tensor<3xf32>) -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// CHECK: func @dot_matvec(%[[ARG0:.*]]: tensor<?x3xf32>, %[[ARG1:.*]]: tensor<3xf32>)
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[D0:.*]] = dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]]]
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]]
// CHECK: linalg.matvec
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<?x3xf32>, tensor<3xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<?xf32>)
// -----
func @dot_dot(%arg0: tensor<?xf32>,
%arg1: tensor<?xf32>) -> tensor<f32> {
%0 = "mhlo.dot"(%arg0, %arg1) : (tensor<?xf32>, tensor<?xf32>) -> tensor<f32>
return %0 : tensor<f32>
}
// CHECK: func @dot_dot(%[[ARG0:.*]]: tensor<?xf32>, %[[ARG1:.*]]: tensor<?xf32>)
// CHECK: %[[INIT:.*]] = linalg.init_tensor []
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]]
// CHECK: linalg.dot
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<?xf32>, tensor<?xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<f32>)
// -----
func @dot_general(%arg0: tensor<?x?x3xf32>,
%arg1: tensor<?x3x?xf32>) -> tensor<?x?x?xf32> {
%0 = "mhlo.dot_general"(%arg0, %arg1) {
dot_dimension_numbers = {
lhs_batching_dimensions = dense<0> : tensor<1xi64>,
lhs_contracting_dimensions = dense<2> : tensor<1xi64>,
rhs_batching_dimensions = dense<0> : tensor<1xi64>,
rhs_contracting_dimensions = dense<1> : tensor<1xi64>
},
precision_config = ["DEFAULT", "DEFAULT"]
} : (tensor<?x?x3xf32>, tensor<?x3x?xf32>) -> tensor<?x?x?xf32>
return %0 : tensor<?x?x?xf32>
}
// CHECK: func @dot_general(%[[ARG0:.*]]: tensor<?x?x3xf32>, %[[ARG1:.*]]: tensor<?x3x?xf32>)
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[D0:.*]] = dim %[[ARG0]], %[[C0]]
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[D1:.*]] = dim %[[ARG0]], %[[C1]]
// CHECK: %[[C2:.*]] = constant 2 : index
// CHECK: %[[D2:.*]] = dim %[[ARG1]], %[[C2]]
// CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]], %[[D1]], %[[D2]]]
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]]
// CHECK: linalg.batch_matmul
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<?x?x3xf32>, tensor<?x3x?xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<?x?x?xf32>)
// -----
func @batch_matmul_large
(%arg0: tensor<2x16x32xf32>, %arg1: tensor<2x32x32xf32>) -> tensor<2x16x32xf32> {
%0 = "mhlo.dot_general"(%arg0, %arg1) {
dot_dimension_numbers = {
lhs_batching_dimensions = dense<0> : tensor<1xi64>,
lhs_contracting_dimensions = dense<2> : tensor<1xi64>,
rhs_batching_dimensions = dense<0> : tensor<1xi64>,
rhs_contracting_dimensions = dense<1> : tensor<1xi64>},
precision_config = ["DEFAULT", "DEFAULT"]}
: (tensor<2x16x32xf32>, tensor<2x32x32xf32>) -> tensor<2x16x32xf32>
return %0 : tensor<2x16x32xf32>
}
// CHECK: func @batch_matmul_large(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: tensor<2x16x32xf32>,
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: tensor<2x32x32xf32>)
// CHECK: %[[INIT:.*]] = linalg.init_tensor [2, 16, 32]
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]]
// CHECK: %[[DOT:.*]] = linalg.batch_matmul
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x16x32xf32>, tensor<2x32x32xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<2x16x32xf32>)
// -----
// CHECK-LABEL: @clamp
// CHECK-SAME: %[[LB:.*]]: tensor<4xf32>, %[[X:.*]]: tensor<4xf32>, %[[UB:.*]]: tensor<4xf32>
func @clamp(%lb : tensor<4xf32>, %x : tensor<4xf32>, %ub : tensor<4xf32>)
-> tensor<4xf32> {
// CHECK: %[[INIT:.*]] = linalg.init_tensor
// CHECK: %[[RESULT:.*]] = linalg.generic {{.*}} ins(%[[LB]], %[[X]], %[[UB]] : tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) outs(%[[INIT]] : tensor<4xf32>)
// CHECK: ^bb0(%[[SCALAR_LB:.*]]: f32, %[[SCALAR_X:.*]]: f32, %[[SCALAR_UB:.*]]: f32, %{{.*}}: f32):
// CHECK: cmpf olt
// CHECK: select
// CHECK: cmpf uno
// CHECK: select
// CHECK: cmpf ogt
// CHECK: select
// CHECK: cmpf uno
// CHECK: %[[MAX_X2_LB:.*]] = select
// CHECK: linalg.yield %[[MAX_X2_LB]]
// CHECK: } -> tensor<4xf32>
// CHECK: return %[[RESULT]] : tensor<4xf32>
%0 = "mhlo.clamp"(%lb, %x, %ub) : (tensor<4xf32>, tensor<4xf32>,
tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32>
}
// -----
func @reduce_add(%arg0: tensor<5x4xi32>, %arg1: tensor<i32>) -> tensor<5xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg3: tensor<i32>, %arg4 : tensor<i32>):
%1 = mhlo.add %arg3, %arg4 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor<i32>) -> tensor<5xi32>
return %0 : tensor<5xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-LABEL: @reduce_add
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @reduce_minimum(%arg0: tensor<5x4xi32>, %arg1: tensor<i32>) -> tensor<5xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg3: tensor<i32>, %arg4 : tensor<i32>):
%1 = mhlo.minimum %arg3, %arg4 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor<i32>) -> tensor<5xi32>
return %0 : tensor<5xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-LABEL: @reduce_minimum
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[CMP:.*]] = cmpi slt, %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @reduce_maximum(%arg0: tensor<5x4xi32>, %arg1: tensor<i32>) -> tensor<5xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg3: tensor<i32>, %arg4 : tensor<i32>):
%1 = mhlo.maximum %arg3, %arg4 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor<i32>) -> tensor<5xi32>
return %0 : tensor<5xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-LABEL: @reduce_maximum
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @reduce_dim0(%arg0: tensor<5x4xi32>, %arg1: tensor<i32>) -> tensor<4xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg3: tensor<i32>, %arg4 : tensor<i32>):
%1 = mhlo.maximum %arg3, %arg4 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<0> : tensor<1xi64>} : (tensor<5x4xi32>, tensor<i32>) -> tensor<4xi32>
return %0 : tensor<4xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d1, d0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-LABEL: @reduce_dim0
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [4]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<4xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @reduce_init_const(%arg0: tensor<1x10xf32>) -> tensor<1xf32> {
%cst = constant dense<0xFF800000> : tensor<f32>
%0 = "mhlo.reduce"(%arg0, %cst) ({
^bb0(%arg1: tensor<f32>, %arg2: tensor<f32>): // no predecessors
%1 = mhlo.add %arg1, %arg2 : tensor<f32>
"mhlo.return"(%1) : (tensor<f32>) -> ()
}) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x10xf32>, tensor<f32>) -> tensor<1xf32>
return %0 : tensor<1xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-LABEL: @reduce_init_const
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [1]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %{{.*}})
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<1x10xf32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<1xf32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32):
// CHECK-NEXT: %[[RESULT:.*]] = addf %[[LHS_IN]], %[[RHS_IN]] : f32
// CHECK-NEXT: linalg.yield %[[RESULT]] : f32
// -----
func @reduce_multi_dimensions(%arg0: tensor<5x4x3xi32>,
%arg1: tensor<i32>) -> tensor<4xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg2: tensor<i32>, %arg3: tensor<i32>):
%1 = mhlo.add %arg2, %arg3 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<[0, 2]> : tensor<2xi64>} : (tensor<5x4x3xi32>, tensor<i32>) -> tensor<4xi32>
return %0 : tensor<4xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-LABEL: @reduce_multi_dimensions
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [4]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<5x4x3xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<4xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32
// -----
func @reduce_dynamic(%arg0: tensor<?x?xi32>, %arg1: tensor<i32>) -> tensor<?xi32> {
%0 = "mhlo.reduce"(%arg0, %arg1) ({
^bb0(%arg3: tensor<i32>, %arg4 : tensor<i32>):
%1 = mhlo.add %arg3, %arg4 : tensor<i32>
"mhlo.return"(%1) : (tensor<i32>) -> ()
}) {dimensions = dense<1> : tensor<1xi64>} : (tensor<?x?xi32>, tensor<i32>) -> tensor<?xi32>
return %0 : tensor<?xi32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK: func @reduce_dynamic(%[[ARG0:.*]]: tensor<?x?xi32>
// CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor<i32>
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
// CHECK-DAG: %[[DIM1:.*]] = dim %[[ARG0]], %[[C0]] : tensor<?x?xi32>
// CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [%[[DIM1]]]
// CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]])
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}}tensor<?x?xi32>)
// CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<?xi32>)
// CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32):
// CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32
// CHECK-NEXT: linalg.yield %[[RESULT]] : i32