mlir-hlo/include/mlir-hlo/Dialect/mhlo/transforms/passes.h

106 lines
3.9 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_TRANSFORMS_PASSES_H_
#define TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_TRANSFORMS_PASSES_H_
#include <memory>
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/ArrayRef.h"
namespace mlir {
class FuncOp;
class ModuleOp;
class Operation;
template <typename T>
class OperationPass;
class Pass;
namespace mhlo {
/// Lowers HLO control flow ops to the Standard dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeControlFlowPass();
/// Lowers from HLO dialect to Standard dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeToStdPass();
/// Lowers from HLO dialect to LHLO dialect allocating/deallocating temporary
/// buffers if necessary. If `results_escape_functions` is set to true,
/// allocated buffers for function results will be returned and escape the
/// function. Otherwise, the signature is rewritten with extra arguments for the
/// buffers that are to be used for results.
std::unique_ptr<OperationPass<ModuleOp>> createLegalizeToLhloPass(
bool results_escape_functions = false);
// Lowers from HLO dialect to Linalg dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeHloToLinalgPass();
// Transforms unranked HLO operations to ranked ones where possible.
std::unique_ptr<OperationPass<FuncOp>> createTransformUnrankedHloPass();
// Sinks constants implicitly captured in control flow regions. This is
// necessary to export to XLA.
std::unique_ptr<OperationPass<FuncOp>> createSinkConstantsToControlFlowPass();
// fuse mhlo ops to kLoop/kInput fusion patterns
std::unique_ptr<OperationPass<FuncOp>> createMhloFusionPass();
} // namespace mhlo
namespace lmhlo {
// Lowers from LHLO dialect to Affine dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeToAffinePass();
// Lowers from LHLO dialect to Linalg dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeLhloToLinalgPass();
// Lowers from LHLO dialect to GPU dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeToGpuPass();
// Fuses linalg ops obtained after LHLO lowering. To enable fusion,
// operations are first tiled.
//
// When 'use_parallel_loops' is set, the tiling will use scf.parallel
// operations. Otherwise, scf.for operations are used.
//
// 'tile_sizes' provides the tile sizes to use for tiling. If the linalg
// operation has more dimensions than tile sizes provided, 1 is used as
// default.
std::unique_ptr<OperationPass<FuncOp>> createLhloFuseLinalg(
bool use_parallel_loops = false, llvm::ArrayRef<unsigned> tile_sizes = {});
// Removes unnecessary LHLO copies which copy from the allocated buffers to the
// block arguments. The block arguments are used instead of all uses of these
// buffers. The buffers are freed. This pass only works in regions that contain
// a single block.
std::unique_ptr<Pass> createLhloCopyRemovalPass();
// Lowers from LHLO dialect to parallel loops.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeLhloToParallelLoopsPass();
} // namespace lmhlo
namespace hlo {
/// Lowers the standard TanhOp to an approximation that does not use intrinsics.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeTanhToApproximationPass();
} // namespace hlo
} // namespace mlir
#endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_TRANSFORMS_PASSES_H_