mlir-hlo/tests/reify-result-types.mlir

51 lines
1.8 KiB
MLIR

// RUN: mlir-hlo-opt -resolve-shaped-type-result-dims -canonicalize \
// RUN: -split-input-file %s -o - | FileCheck %s
// CHECK-LABEL: @dynamic_broadcast_i32_shape
func @dynamic_broadcast_i32_shape(%arg0 : tensor<?xi32>, %arg1 : tensor<*xf32>)
-> index {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[DIM:.*]] = tensor.extract %arg0[%[[C0]]] : tensor<?xi32>
// CHECK: %[[RESULT:.*]] = index_cast %[[DIM]] : i32 to index
// CHECK: return %[[RESULT]]
%c0 = constant 0 : index
%0 = "mhlo.dynamic_broadcast_in_dim"(%arg1, %arg0)
{ broadcast_dimensions = dense<0> : tensor<1xi64> }
: (tensor<*xf32>, tensor<?xi32>) -> tensor<*xf32>
%1 = memref.dim %0, %c0 : tensor<*xf32>
return %1 : index
}
// -----
// CHECK-LABEL: @dynamic_iota_i32_shape
func @dynamic_iota_i32_shape(%arg0 : tensor<?xi32>) -> index {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[DIM:.*]] = tensor.extract %arg0[%[[C0]]] : tensor<?xi32>
// CHECK: %[[RESULT:.*]] = index_cast %[[DIM]] : i32 to index
// CHECK: return %[[RESULT]]
%c0 = constant 0 : index
%0 = "mhlo.dynamic_iota"(%arg0)
{iota_dimension = 0 : i64}
: (tensor<?xi32>) -> tensor<?xi32>
%1 = memref.dim %0, %c0 : tensor<?xi32>
return %1 : index
}
// -----
// CHECK-LABEL: @dynamic_reshape_i32_shape
func @dynamic_reshape_i32_shape(%arg0 : tensor<?xi32>, %arg1 : tensor<*xf32>)
-> index {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[DIM:.*]] = tensor.extract %arg0[%[[C0]]] : tensor<?xi32>
// CHECK: %[[RESULT:.*]] = index_cast %[[DIM]] : i32 to index
// CHECK: return %[[RESULT]]
%c0 = constant 0 : index
%0 = "mhlo.dynamic_reshape"(%arg1, %arg0)
{ broadcast_dimensions = dense<0> : tensor<1xi64> }
: (tensor<*xf32>, tensor<?xi32>) -> tensor<*xf32>
%1 = memref.dim %0, %c0 : tensor<*xf32>
return %1 : index
}