143 lines
6.1 KiB
C++
143 lines
6.1 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
// This file defines the operations used in the XLA dialect.
|
|
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h"
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/APFloat.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/APInt.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/ArrayRef.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLExtras.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/SmallVector.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/StringRef.h"
|
|
#include "third_party/llvm/llvm-project/llvm/include/llvm/Support/FormatVariadic.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Attributes.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Builders.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Dialect.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Location.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/MLIRContext.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/OpDefinition.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/OpImplementation.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/OperationSupport.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/PatternMatch.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/StandardTypes.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/TypeUtilities.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Types.h"
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Value.h"
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h.inc"
|
|
|
|
namespace mlir {
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_structs.cc.inc"
|
|
namespace xla_lhlo {
|
|
|
|
XlaLhloDialect::XlaLhloDialect(MLIRContext *context)
|
|
: Dialect(getDialectNamespace(), context) {
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.cc.inc"
|
|
>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StaticMemRefCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value StaticMemRefCastOp::getViewSource() { return *getODSOperands(0).begin(); }
|
|
|
|
static LogicalResult Verify(StaticMemRefCastOp op) {
|
|
if (!op.operand().getType().cast<ShapedType>().hasStaticShape())
|
|
return op.emitOpError("operand must have static shape");
|
|
if (!op.getType().hasStaticShape())
|
|
return op.emitOpError("result must have static shape");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DynamicMemRefCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value DynamicMemRefCastOp::getViewSource() {
|
|
return *getODSOperands(0).begin();
|
|
}
|
|
|
|
static LogicalResult Verify(DynamicMemRefCastOp op) {
|
|
// Check if `sizes` and `strides` args are compatible with the result type.
|
|
if (op.sizes().size() != op.getType().getRank())
|
|
return op.emitOpError(
|
|
"`sizes` args count must be equal to the rank of the output memref");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReshapeMemrefCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value ReshapeMemRefCastOp::getViewSource() { return operand(); }
|
|
|
|
static LogicalResult Verify(ReshapeMemRefCastOp op) {
|
|
Type operandType = op.operand().getType();
|
|
Type resultType = op.result().getType();
|
|
|
|
Type operandElementType = operandType.cast<ShapedType>().getElementType();
|
|
Type resultElementType = resultType.cast<ShapedType>().getElementType();
|
|
if (operandElementType != resultElementType)
|
|
return op.emitOpError(
|
|
"element types of source and destination memref "
|
|
"types should be the same");
|
|
|
|
if (auto operandMemRefType = operandType.dyn_cast<MemRefType>())
|
|
if (!operandMemRefType.getAffineMaps().empty())
|
|
return op.emitOpError(
|
|
"operand memref type should have identity affine map");
|
|
|
|
int64_t shapeSize = op.shape().getType().cast<MemRefType>().getDimSize(0);
|
|
auto resultMemRefType = resultType.dyn_cast<MemRefType>();
|
|
if (resultMemRefType) {
|
|
if (shapeSize == ShapedType::kDynamicSize)
|
|
return op.emitOpError(
|
|
"cannot use shape operand with dynamic length to "
|
|
"cast statically-ranked memref type");
|
|
if (shapeSize != resultMemRefType.getRank())
|
|
return op.emitOpError(
|
|
"length of shape operand differs from the result's memref rank");
|
|
|
|
if (!resultMemRefType.getAffineMaps().empty())
|
|
return op.emitOpError(
|
|
"result memref type should have identity affine map");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.cc.inc"
|
|
|
|
// TODO(cheshire): Support folding, reuse code from hlo_ops.cc.
|
|
|
|
void FusionOp::build(OpBuilder &builder, OperationState &result,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
result.addAttributes(attributes);
|
|
Region *bodyRegion = result.addRegion();
|
|
FusionOp::ensureTerminator(*bodyRegion, builder, result.location);
|
|
}
|
|
|
|
} // namespace xla_lhlo
|
|
} // namespace mlir
|