2019-11-27 08:29:18 +08:00
|
|
|
// RUN: onnf-opt --shape-inference --lower-frontend %s -split-input-file | FileCheck %s
|
|
|
|
|
[MLIR] Lower ONNX element-wise binary ops: Mul, Div, Sub, And, Or, Xor (#388)
* Lower ONNX element-wise binary ops: Mul, Div, Sub, And, Or, Xor
* Edit gen_doc.py to avoid changes about AnyTypeOf<[AnyMemRef, AnyTensor]>
* Miss a space
* Add tests
* Shorten ONNXElementWiseBinaryOpLowering into ONNXEWBinaryOpLowering
* Move lowering patterns into runOnModule()
* Redundant space
2019-12-04 00:17:21 +08:00
|
|
|
func @test_add(%arg0 : tensor<?x10xf32>, %arg1 : tensor<?x10xf32>) -> tensor<*xf32> {
|
|
|
|
%0 = "onnx.Add"(%arg0, %arg1) : (tensor<?x10xf32>, tensor<?x10xf32>) -> tensor<*xf32>
|
|
|
|
"std.return"(%0) : (tensor<*xf32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_add
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32
|
|
|
|
// CHECK: store [[ADDF]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xf32>
|
|
|
|
}
|
|
|
|
|
|
|
|
func @test_mul(%arg0 : tensor<?x10xf32>, %arg1 : tensor<?x10xf32>) -> tensor<*xf32> {
|
|
|
|
%0 = "onnx.Mul"(%arg0, %arg1) : (tensor<?x10xf32>, tensor<?x10xf32>) -> tensor<*xf32>
|
|
|
|
"std.return"(%0) : (tensor<*xf32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_mul
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[MULF:%.+]] = mulf [[LOAD1]], [[LOAD2]] : f32
|
|
|
|
// CHECK: store [[MULF]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xf32>
|
|
|
|
}
|
|
|
|
|
|
|
|
func @test_div(%arg0 : tensor<?x10xf32>, %arg1 : tensor<?x10xf32>) -> tensor<*xf32> {
|
|
|
|
%0 = "onnx.Div"(%arg0, %arg1) : (tensor<?x10xf32>, tensor<?x10xf32>) -> tensor<*xf32>
|
|
|
|
"std.return"(%0) : (tensor<*xf32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_div
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[DIVF:%.+]] = divf [[LOAD1]], [[LOAD2]] : f32
|
|
|
|
// CHECK: store [[DIVF]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xf32>
|
|
|
|
}
|
|
|
|
|
|
|
|
func @test_sub(%arg0 : tensor<?x10xf32>, %arg1 : tensor<?x10xf32>) -> tensor<*xf32> {
|
|
|
|
%0 = "onnx.Sub"(%arg0, %arg1) : (tensor<?x10xf32>, tensor<?x10xf32>) -> tensor<*xf32>
|
|
|
|
"std.return"(%0) : (tensor<*xf32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_sub
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: [[SUBF:%.+]] = subf [[LOAD1]], [[LOAD2]] : f32
|
|
|
|
// CHECK: store [[SUBF]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xf32>
|
2019-11-27 08:29:18 +08:00
|
|
|
}
|
|
|
|
|
[MLIR] Lower ONNX element-wise binary ops: Mul, Div, Sub, And, Or, Xor (#388)
* Lower ONNX element-wise binary ops: Mul, Div, Sub, And, Or, Xor
* Edit gen_doc.py to avoid changes about AnyTypeOf<[AnyMemRef, AnyTensor]>
* Miss a space
* Add tests
* Shorten ONNXElementWiseBinaryOpLowering into ONNXEWBinaryOpLowering
* Move lowering patterns into runOnModule()
* Redundant space
2019-12-04 00:17:21 +08:00
|
|
|
func @test_and(%arg0 : tensor<?x10xi32>, %arg1 : tensor<?x10xi32>) -> tensor<*xi32> {
|
|
|
|
%0 = "onnx.And"(%arg0, %arg1) : (tensor<?x10xi32>, tensor<?x10xi32>) -> tensor<*xi32>
|
|
|
|
"std.return"(%0) : (tensor<*xi32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_and
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xi32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[AND:%.+]] = and [[LOAD1]], [[LOAD2]] : i32
|
|
|
|
// CHECK: store [[AND]], [[RES]][%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xi32>
|
|
|
|
}
|
|
|
|
|
|
|
|
func @test_or(%arg0 : tensor<?x10xi32>, %arg1 : tensor<?x10xi32>) -> tensor<*xi32> {
|
|
|
|
%0 = "onnx.Or"(%arg0, %arg1) : (tensor<?x10xi32>, tensor<?x10xi32>) -> tensor<*xi32>
|
|
|
|
"std.return"(%0) : (tensor<*xi32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_or
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xi32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[OR:%.+]] = or [[LOAD1]], [[LOAD2]] : i32
|
|
|
|
// CHECK: store [[OR]], [[RES]][%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xi32>
|
|
|
|
}
|
|
|
|
|
|
|
|
func @test_xor(%arg0 : tensor<?x10xi32>, %arg1 : tensor<?x10xi32>) -> tensor<*xi32> {
|
|
|
|
%0 = "onnx.Xor"(%arg0, %arg1) : (tensor<?x10xi32>, tensor<?x10xi32>) -> tensor<*xi32>
|
|
|
|
"std.return"(%0) : (tensor<*xi32>) -> ()
|
|
|
|
|
|
|
|
// CHECK-LABEL: test_xor
|
|
|
|
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xi32>
|
|
|
|
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
|
|
|
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
|
|
|
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
|
|
|
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
|
|
|
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xi32>
|
|
|
|
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
|
|
|
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: [[XOR:%.+]] = xor [[LOAD1]], [[LOAD2]] : i32
|
|
|
|
// CHECK: store [[XOR]], [[RES]][%arg2, %arg3] : memref<?x10xi32>
|
|
|
|
// CHECK: return [[RES]] : memref<?x10xi32>
|
|
|
|
}
|