onnx-mlir/src/pass/onnx_rewrite.cpp

399 lines
14 KiB
C++
Raw Normal View History

//===- onnx_rewrite.cpp - ONNX High Level Optimizer -----------------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file implements a set of rewriters for operations in the ONNX dialect
// that can be rewritten by using other ONNX operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "src/dialect/onnx/onnx_ops.hpp"
using namespace mlir;
namespace {
// There are two ways to write rewrite rules:
// - Declarative manner: specify rewrite rules in a TableGen record, and
// - Manual Manner: subclass the mlir::RewritePattern.
//
// We prefer to use the former way as much as possible. However, there is a
// limitation about operation definition specification (ODS) in TableGen that
// requires us to write custom builders, that is
// "all ODS-generated `build()` methods require specifying the result type(s),
// unless the op has known traits like `SameOperandsAndResultType` that we can
// use to auto-generate a `build()` method with result type deduction".
//
// More information about the limitation can be found here:
// https://github.com/llvm/llvm-project/blob/master/mlir/docs/DeclarativeRewrites.md#building-operations
//
// Currently, we use the latter way of writing rewrite rules. There are two
// reasons for this decision:
// - To insert custom builders for operations, it is better to change the script
// gen_doc.py to generate all possibles custom builders for a large class of
// operations. At the time of this patch created, the gen_doc.py was changing,
// so we decided to write manually to reduce conflicts.
// - In declarative rewriting, we should deal with optional attributes. E.g. for
// to handle optional attributes, but I haven't tried it yet.
//
// Once we have done the above issues, we will switch to use the declarative
// manner.
//===----------------------------------------------------------------------===//
// ONNXReduceL1Op %X = ONNXReduceSumOp (ONNXAbsOp %X)
//===----------------------------------------------------------------------===//
struct ReduceL1OpPattern : public RewritePattern {
ReduceL1OpPattern(MLIRContext *context)
: RewritePattern(ONNXReduceL1Op::getOperationName(),
{ONNXAbsOp::getOperationName(),
ONNXReduceSumOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto opInput = op->getOperands()[0]; // %X
auto opResults = op->getResults();
auto opAttrs = op->getAttrs();
// Rewrite
ONNXAbsOp absOp;
{
auto elementType = opInput.getType().cast<TensorType>().getElementType();
absOp = rewriter.create<ONNXAbsOp>(
loc, UnrankedTensorType::get(elementType), opInput);
}
ONNXReduceSumOp sumOp;
{
SmallVector<Type, 4> types;
for (auto v : opResults) {
types.emplace_back(v.getType());
}
SmallVector<Value, 1> values;
values.emplace_back(absOp.getResult());
SmallVector<NamedAttribute, 4> attrs;
for (auto attr : opAttrs) {
attrs.emplace_back(attr);
}
sumOp = rewriter.create<ONNXReduceSumOp>(loc, types, values, attrs);
}
rewriter.replaceOp(op, sumOp.getResult());
return matchSuccess();
};
};
//===----------------------------------------------------------------------===//
// ONNXReduceL2Op %X = ONNXSqrtOp (ONNXReduceSumSquareOp (%X))
//===----------------------------------------------------------------------===//
struct ReduceL2OpPattern : public RewritePattern {
ReduceL2OpPattern(MLIRContext *context)
: RewritePattern(ONNXReduceL2Op::getOperationName(),
{ONNXSqrtOp::getOperationName(),
ONNXReduceSumSquareOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto opInput = op->getOperands()[0]; // %X
auto opResults = op->getResults();
auto opAttrs = op->getAttrs();
// Rewrite
ONNXReduceSumSquareOp sumSquareOp;
{
auto elementType = opInput.getType().cast<TensorType>().getElementType();
sumSquareOp = rewriter.create<ONNXReduceSumSquareOp>(
loc, UnrankedTensorType::get(elementType), opInput, opAttrs);
}
ONNXSqrtOp sqrtOp;
{
SmallVector<Type, 4> types;
for (auto v : opResults) {
types.emplace_back(v.getType());
}
sqrtOp = rewriter.create<ONNXSqrtOp>(loc, types, sumSquareOp.getResult());
}
rewriter.replaceOp(op, sqrtOp.getResult());
return matchSuccess();
};
};
//===----------------------------------------------------------------------===//
// ONNXReduceLogSumOp %X = ONNXLogOp (ONNXReduceSumOp (%X))
//===----------------------------------------------------------------------===//
struct ReduceLogSumOpPattern : public RewritePattern {
ReduceLogSumOpPattern(MLIRContext *context)
: RewritePattern(ONNXReduceLogSumOp::getOperationName(),
{ONNXReduceSumOp::getOperationName(),
ONNXLogOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto opInput = op->getOperands()[0]; // %X
auto opResults = op->getResults();
auto opAttrs = op->getAttrs();
// Rewrite
ONNXReduceSumOp sumOp;
{
auto elementType = opInput.getType().cast<TensorType>().getElementType();
sumOp = rewriter.create<ONNXReduceSumOp>(
loc, UnrankedTensorType::get(elementType), opInput, opAttrs);
}
ONNXLogOp logOp;
{
SmallVector<Type, 4> types;
for (auto v : opResults) {
types.emplace_back(v.getType());
}
logOp = rewriter.create<ONNXLogOp>(loc, types, sumOp.getResult());
}
rewriter.replaceOp(op, logOp.getResult());
return matchSuccess();
};
};
//===----------------------------------------------------------------------===//
// ONNXReduceLogSumExpOp %X = ONNXReduceLogSumOp (ONNXExpOp %X)
//===----------------------------------------------------------------------===//
struct ReduceLogSumExpOpPattern : public RewritePattern {
ReduceLogSumExpOpPattern(MLIRContext *context)
: RewritePattern(ONNXReduceLogSumExpOp::getOperationName(),
{ONNXExpOp::getOperationName(),
ONNXReduceLogSumOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto opInput = op->getOperands()[0]; // %X
auto opResults = op->getResults();
auto opAttrs = op->getAttrs();
// Rewrite
ONNXExpOp expOp;
{
auto elementType = opInput.getType().cast<TensorType>().getElementType();
expOp = rewriter.create<ONNXExpOp>(
loc, UnrankedTensorType::get(elementType), opInput);
}
ONNXReduceLogSumOp logSumOp;
{
SmallVector<Type, 4> types;
for (auto v : opResults) {
types.emplace_back(v.getType());
}
SmallVector<Value, 1> values;
values.emplace_back(expOp.getResult());
SmallVector<NamedAttribute, 4> attrs;
for (auto attr : opAttrs) {
attrs.emplace_back(attr);
}
logSumOp = rewriter.create<ONNXReduceLogSumOp>(loc, types, values, attrs);
}
rewriter.replaceOp(op, logSumOp.getResult());
return matchSuccess();
};
};
//===----------------------------------------------------------------------===//
// ONNXReduceSumSquareOp %X = ONNXReduceSumOp (ONNXMulOp %X, %X)
//===----------------------------------------------------------------------===//
struct ReduceSumSquareOpPattern : public RewritePattern {
ReduceSumSquareOpPattern(MLIRContext *context)
: RewritePattern(ONNXReduceSumSquareOp::getOperationName(),
{ONNXMulOp::getOperationName(),
ONNXReduceSumOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto opInput = op->getOperands()[0]; // %X
auto opResults = op->getResults();
auto opAttrs = op->getAttrs();
// Rewrite
ONNXMulOp mulOp;
{
auto elementType = opInput.getType().cast<TensorType>().getElementType();
mulOp = rewriter.create<ONNXMulOp>(
loc, UnrankedTensorType::get(elementType), opInput, opInput);
}
ONNXReduceSumOp sumOp;
{
SmallVector<Type, 4> types;
for (auto v : opResults) {
types.emplace_back(v.getType());
}
SmallVector<Value, 1> values;
values.emplace_back(mulOp.getResult());
SmallVector<NamedAttribute, 4> attrs;
for (auto attr : opAttrs) {
attrs.emplace_back(attr);
}
sumOp = rewriter.create<ONNXReduceSumOp>(loc, types, values, attrs);
}
rewriter.replaceOp(op, sumOp.getResult());
return matchSuccess();
};
};
//===----------------------------------------------------------------------===//
// Rewrite:
// %0 = onnx.ConvNoBiasOp(%D : tensor<DShape>, %K)
// {pads = [b0, b1, ... bK, e0, e1, ..., eK]} ->
// tensor<OutShape>
//
// as:
// %0 = onnx.PadConstantValuePasOp(%D)
// {pads = [0, 0, b0, b1, ... bK, 0, 0, e0, e1, ..., eK]} ->
// tensor<DPaddedShape>
// %1 = onnx.ConvNoBias(%0 : tensor<DPaddedShape>, %K) {pads = [0, ..., 0]} ->
// tensor<OutShape>
//===----------------------------------------------------------------------===//
struct SplitConvOpPattern : public RewritePattern {
SplitConvOpPattern(MLIRContext *context)
: RewritePattern(ONNXConvNoBiasOp::getOperationName(),
{ONNXPadConstantValuePadOp::getOperationName(),
ONNXConvNoBiasOp::getOperationName()},
1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto loc = op->getLoc();
// If convolution does not use padding then no rewrite is required.
ONNXConvNoBiasOp convOp = llvm::dyn_cast<ONNXConvNoBiasOp>(op);
auto padsAttribute = convOp.padsAttr();
if (!padsAttribute)
return matchFailure();
// If auto_pad is VALID then no padding happens and no rewrite isrequired.
auto autoPad = convOp.auto_pad();
if (autoPad == "VALID")
return matchFailure();
auto data = op->getOperands()[0];
auto inputShape = data.getType().cast<TensorType>().getShape();
// Dimensionality of the input:
// inputRank
// |----------------------|
// D : (N x C x D1 x D2 x ... DK)
// |______________|
// inputDims
//
int64_t inputRank = inputShape.size();
int64_t inputDims = inputRank - 2;
// If all pads values are equal to zero then no rewrite is required.
bool allZeros = true;
for (auto padsValue : padsAttribute.getValue()) {
if (padsValue.cast<IntegerAttr>().getInt() > 0) {
allZeros = false;
break;
}
}
if (allZeros)
return matchFailure();
// Create padding vector for the explicit padding op attribute.
SmallVector<int64_t, 4> pads(2 * inputRank, 0);
SmallVector<int64_t, 4> outPaddedShape(inputRank, 0);
outPaddedShape[0] = inputShape[0];
outPaddedShape[1] = inputShape[1];
for (int i = 0; i < inputDims; ++i) {
int64_t beginPad =
padsAttribute.getValue()[i].cast<IntegerAttr>().getInt();
int64_t endPad =
padsAttribute.getValue()[inputDims + i].cast<IntegerAttr>().getInt();
pads[i + 2] = beginPad;
pads[inputRank + i + 2] = endPad;
outPaddedShape[i + 2] += beginPad + inputShape[i + 2] + endPad;
}
// Create padding operation.
auto inputElemType = data.getType().cast<TensorType>().getElementType();
ONNXPadConstantValuePadOp paddingOp =
rewriter.create<ONNXPadConstantValuePadOp>(
loc, RankedTensorType::get(outPaddedShape, inputElemType), data,
rewriter.getI64ArrayAttr(pads), FloatAttr::get(inputElemType, 0),
StringAttr::get("constant", loc->getContext()));
SmallVector<int64_t, 4> newConvPads(2 * inputDims, 0);
auto tensorType = (*op->result_type_begin()).cast<TensorType>();
ONNXConvNoBiasOp newConvOp = rewriter.create<ONNXConvNoBiasOp>(
loc, tensorType, paddingOp.getResult(), convOp.getOperands()[1],
convOp.auto_padAttr(), convOp.dilationsAttr(),
convOp.groupAttr(), convOp.kernel_shapeAttr(),
rewriter.getI64ArrayAttr(newConvPads),
convOp.stridesAttr());
rewriter.replaceOp(op, newConvOp.getResult());
return matchSuccess();
};
};
} // end anonymous namespace
/// on the ONNXReduceL1Op.
void ONNXReduceL1Op::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ReduceL1OpPattern>(context);
}
/// on the ONNXReduceL2Op.
void ONNXReduceL2Op::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ReduceL2OpPattern>(context);
}
/// on the ONNXReduceLogSumOp.
void ONNXReduceLogSumOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ReduceLogSumOpPattern>(context);
}
/// on the ONNXReduceLogSumExpOp.
void ONNXReduceLogSumExpOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ReduceLogSumExpOpPattern>(context);
}
/// on the ONNXReduceSumSquareOp.
void ONNXReduceSumSquareOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ReduceSumSquareOpPattern>(context);
}
/// on the ONNXReduceSumSquareOp.
void ONNXConvNoBiasOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SplitConvOpPattern>(context);
}