onnx-mlir/src/builder/frontend_dialect_transforme...

368 lines
12 KiB
C++
Raw Normal View History

//===- frontend_dialect_transformer.cpp - MLIR Operations -----------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file transforms the input to available MLIR dialects that can represent
// the operations of the model. Models use the ONNX dialect and any other
// extension dialects that comprise the the operations not supported or covered
// by the ONNX specification.
//
// A `frontend` placeholder dialect is used to encode operations that are not
// covered by any existing dialects.
//
//===----------------------------------------------------------------------===//
#include <numeric>
2019-10-08 07:47:46 +08:00
#include <regex>
2019-12-20 03:46:18 +08:00
#include <string>
2019-10-08 07:47:46 +08:00
#include <tuple>
#include <map>
#include "mlir/Analysis/Verifier.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include "src/compiler/dialect/onnx/onnx_ops.hpp"
#include "frontend_dialect_transformer.hpp"
namespace onnf {
namespace {
2019-12-20 03:46:18 +08:00
void replaceAll(
std::string& str, const std::string& from, const std::string& to) {
if (from.empty())
return;
size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length(); // In case 'to' contains 'from', like replacing
// 'x' with 'yx'
}
}
std::string legalize_name(std::string name) {
std::replace(name.begin(), name.end(), '/', '_');
std::replace(name.begin(), name.end(), '-', '_');
replaceAll(name, ":", "_colon_");
// If tensor name starts with a number, prepend n to make it a legal c++
// identifier.
if (name.size() > 0 && isdigit(name.at(0)))
name.insert(0, 1, 'n');
return name;
}
struct OnnxOnnfSymbolMapping {
/*!
2019-10-08 07:47:46 +08:00
* Get MLIR tensor by onnx tensor name.
* @param name onnx tensor name.
* @return onnf tensor corresponding to `name`.
*/
mlir::Value* GetTensorByOnnxName(std::string name) {
return onnx_name2onnf_tensor.at(legalize_name(name));
}
/*!
2019-10-08 07:47:46 +08:00
* Add a new mapping from onnx tensor name to MLIR symbol.
* @param name onnx tensor name.
* @param tensor MLIR Value* pointer.
*/
void AddMapping(std::string name, mlir::Value* tensor) {
onnx_name2onnf_tensor.emplace(legalize_name(name), tensor);
}
bool ContainKey(std::string name) {
return onnx_name2onnf_tensor.count(name) != 0;
}
private:
/*!
2019-10-08 07:47:46 +08:00
* mapping from onnx tensor names to MLIR tensor.
*/
std::map<std::string, mlir::Value*> onnx_name2onnf_tensor;
};
class FrontendGenImpl {
2019-10-08 07:47:46 +08:00
public:
FrontendGenImpl(mlir::MLIRContext& context)
: context_(context), builder_(&context) {
module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context));
}
mlir::ModuleOp ImportONNXModel(onnx::ModelProto model) {
ImportGraph(model.graph());
return module_;
}
2019-10-08 07:47:46 +08:00
private:
mlir::MLIRContext& context_;
mlir::ModuleOp module_;
mlir::OpBuilder builder_;
// mapping between string name and symbol
OnnxOnnfSymbolMapping frontend_symbols_;
2019-10-08 07:47:46 +08:00
mlir::Location UnknownLoc() { return mlir::UnknownLoc::get(&context_); }
// Convert type to MLIR type.
// A complete list of types can be found in:
2019-12-20 08:51:01 +08:00
// <onnf-build-folder>/third_party/onnx/onnx/onnx.pb.h
mlir::Type TypeConvert(onnx::TensorProto_DataType intype) {
switch (intype) {
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT16:
return builder_.getF16Type();
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT:
return builder_.getF32Type();
case onnx::TensorProto_DataType::TensorProto_DataType_DOUBLE:
return builder_.getF64Type();
case onnx::TensorProto_DataType::TensorProto_DataType_INT8:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT8:
return builder_.getIntegerType(8);
case onnx::TensorProto_DataType::TensorProto_DataType_INT16:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT16:
return builder_.getIntegerType(16);
case onnx::TensorProto_DataType::TensorProto_DataType_INT32:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT32:
return builder_.getIntegerType(32);
case onnx::TensorProto_DataType::TensorProto_DataType_INT64:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT64:
return builder_.getIntegerType(64);
case onnx::TensorProto_DataType::TensorProto_DataType_BOOL:
return builder_.getI1Type();
case onnx::TensorProto_DataType::TensorProto_DataType_STRING:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX64:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX128:
case onnx::TensorProto_DataType::TensorProto_DataType_UNDEFINED:
return nullptr;
}
}
//if c++17 is used, these two def can be combined with 'if constexpr'
//leave n there for possible future use
//alternative is to use template and pass the outputTypes, inputs and attributes
//as parameter
#define MultipleOuts(name, nIn, nOut)\
{ \
if (nIn == inputs.size() && nOut == outputTypes.size()) {\
auto op = builder_.create<mlir::ONNX##name##Op>(UnknownLoc(), outputTypes, inputs, attributes); \
for (int i = 0; i < node.output().size(); i++) { \
frontend_symbols_.AddMapping(\
legalize_name(node.output()[i]), op.getResult(i));\
}\
return;\
}\
}
#define OneOut(name, nIn, nOut)\
{ \
if (nIn == inputs.size() && nOut == outputTypes.size()) {\
auto op = builder_.create<mlir::ONNX##name##Op>(UnknownLoc(), outputTypes, inputs, attributes); \
frontend_symbols_.AddMapping(\
legalize_name(node.output()[0]), op.getResult());\
return;\
}\
}
/*!
* Import an onnx input tensor type by determining and recording its type
* in a list of input tensor mlir types.
* @param input onnx input tensor ValueInfoProto.
* @param arg_types list of mlir types representing types of graph input.
*/
void ImportInputTensorType(const onnx::ValueInfoProto& input,
llvm::SmallVector<mlir::Type, 4>& arg_types) {
std::vector<int64_t> dims;
auto shape_proto = input.type().tensor_type().shape();
auto input_tensor_legalized_name = legalize_name(input.name());
for (int i = 0; i < shape_proto.dim_size(); i++) {
if (shape_proto.dim()[i].dim_value()) {
int dim_numeric_size = shape_proto.dim()[i].dim_value();
if (dim_numeric_size > 0) {
dims.push_back(dim_numeric_size);
2019-10-08 07:47:46 +08:00
} else { // If dim_value < 0, then dim is parametric.
// TODO Verify the unknown dim size in MLIR
dims.push_back(-1);
}
} else {
2019-10-08 07:47:46 +08:00
// TODO How to represent variable length
dims.push_back(-1);
}
}
mlir::Type elementType =
TypeConvert(input.type().tensor_type().elem_type());
llvm::ArrayRef<int64_t> tensor_dims(dims.data(), dims.size());
arg_types.emplace_back(
mlir::RankedTensorType::get(tensor_dims, elementType));
}
/*!
* Import a input tensor symbol by recording a new entry in frontend_symbols_
* recording the mapping between legalized onnx tensor name and mlir::Value*
* for further lookup in computation node importing.
* @param input onnx input tensor ValueInfoProto.
* @param symbol mlir input argument.
*/
void ImportInputTensorSymbol(
const onnx::ValueInfoProto& input, mlir::Value* symbol) {
auto input_tensor_legalized_name = legalize_name(input.name());
assert(
!frontend_symbols_.ContainKey(input_tensor_legalized_name) &&
"Found duplicate legalized input tensor names.");
frontend_symbols_.AddMapping(input_tensor_legalized_name, symbol);
}
void ImportNode(onnx::NodeProto node) {
std::vector<mlir::Value*> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
std::vector<mlir::Type> outputTypes;
for (auto item : node.output()) {
outputTypes.push_back(mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
std::vector<mlir::NamedAttribute> attributes;
llvm::StringRef OpName = node.op_type();
//the following code is generated by gen_doc.py
//refer to dialect/onnx/onnx.td for details
//when the input or output of then op does not match the specification,
//the generic operator is used
//one known reeason is the optional input
#include "src/builder/op_build_table.inc"
// Old way of doing things.
mlir::OperationState result(UnknownLoc(), "frontend." + node.op_type());
for (auto item : node.output()) {
result.addTypes(mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
result.addOperands(inputs);
2019-10-08 07:47:46 +08:00
auto op = builder_.createOperation(result);
for (int i = 0; i < node.output().size(); i++) {
auto r = op->getResult(i);
frontend_symbols_.AddMapping(legalize_name(node.output()[i]), r);
}
2019-10-08 07:47:46 +08:00
// TODO more info from node: attributes
}
/*!
* Import output tensor, by doing the following:
* - Add the type of this output tensor to a list of tensor
* types representing return types of this graph function.
* - Add this output tensor to the list of mlir::Value*
* to be returned by the function representing computation graph.
* @param output onnx output tensor ValueInfoProto.
* @param ret_types a vector of tensor types representing graph's
* output tensor types.
* @param ret_vals a vector of mlir Value* representing graph's
* output tensor.
*/
void ImportOutputTensor(const onnx::ValueInfoProto& output,
llvm::SmallVectorImpl<mlir::Type>& ret_types,
llvm::SmallVectorImpl<mlir::Value*>& ret_vals) {
auto output_tensor_legalized_name = legalize_name(output.name());
assert(
frontend_symbols_.ContainKey(output_tensor_legalized_name) &&
"Output tensor not found");
auto tensor_val =
frontend_symbols_.GetTensorByOnnxName(output_tensor_legalized_name);
ret_types.emplace_back(tensor_val->getType());
ret_vals.push_back(tensor_val);
}
void ImportGraph(
const onnx::GraphProto& graph, const std::string& name = "main") {
2019-10-08 07:47:46 +08:00
// create a function for the graph
// TODO:
// * get name and type for the function.
// * maintain a list of the defined graph
llvm::SmallVector<mlir::Type, 4> arg_types;
// Import the input tensor types.
for (const auto& input : graph.input()) {
ImportInputTensorType(input, arg_types);
}
2019-10-08 07:47:46 +08:00
// TODO: import the initializer
auto func_type = builder_.getFunctionType(arg_types, {});
auto main_func =
mlir::FuncOp::create(UnknownLoc(), name, func_type, /* attrs = */ {});
auto& entryBlock = *main_func.addEntryBlock();
builder_.setInsertionPointToStart(&entryBlock);
module_.push_back(main_func);
for (auto it : llvm::zip(graph.input(), entryBlock.getArguments())) {
ImportInputTensorSymbol(std::get<0>(it), std::get<1>(it));
}
2019-10-08 07:47:46 +08:00
// import nodes in the graph
auto node = graph.node();
for (const auto& item : node) {
ImportNode(item);
}
llvm::SmallVector<mlir::Type, 4> ret_types;
llvm::SmallVector<mlir::Value*, 4> ret_vals;
// Import the output tensors
for (const auto& output : graph.output()) {
ImportOutputTensor(output, ret_types, ret_vals);
}
// Create a return operation to return all ONNX output tensors.
builder_.create<mlir::ReturnOp>(UnknownLoc(), ret_vals);
// Update main function signature to reflect types of newly imported
// output tensors.
func_type = builder_.getFunctionType(arg_types, ret_types);
main_func.setType(func_type);
}
}; // FrontendGenImpl class
2019-10-08 07:47:46 +08:00
} // namespace
} // namespace onnf
namespace onnf {
mlir::OwningModuleRef ImportFrontendModel(onnx::ModelProto model) {
mlir::MLIRContext context;
FrontendGenImpl myONNXGen(context);
auto module = myONNXGen.ImportONNXModel(model);
module.dump();
return module;
}
void ImportFrontendModelFile(std::string model_fname,
mlir::MLIRContext& context, mlir::OwningModuleRef& module) {
onnx::ModelProto model;
std::fstream input(model_fname, std::ios::in | std::ios::binary);
auto parse_success = model.ParseFromIstream(&input);
FrontendGenImpl myONNXGen(context);
module = myONNXGen.ImportONNXModel(model);
module->dump();
}
2019-10-08 07:47:46 +08:00
} // namespace onnf