onnx-mlir/src/compiler/dialect/onnx/onnx_ops.cpp

55 lines
1.8 KiB
C++
Raw Normal View History

//===- onnx_ops.cpp - MLIR ONNX Operations --------------------------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file defines ONNX operations in the MLIR operation set.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "onnx_ops.hpp"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ONNXOpsDialect
//===----------------------------------------------------------------------===//
/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ONNXOpsDialect::ONNXOpsDialect(mlir::MLIRContext* ctx)
: mlir::Dialect(getDialectNamespace(), ctx) {
addOperations<
#define GET_OP_LIST
#include "src/compiler/onnx.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// ONNX Operations
//===----------------------------------------------------------------------===//
static void buildONNXAddOp(mlir::Builder* builder, mlir::OperationState& state,
mlir::Value* lhs, mlir::Value* rhs) {
state.addTypes(UnrankedTensorType::get(builder->getF32Type()));
state.addOperands({lhs, rhs});
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "src/compiler/onnx.cpp.inc"