onnx-mlir/src/Conversion/ONNXToKrnl/NN/Pooling.cpp

326 lines
13 KiB
C++
Raw Normal View History

//===---------------- Pooling.cpp - Lowering Pooling Ops ------------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file lowers the ONNX Pooling Operators to Krnl dialect.
//
//===----------------------------------------------------------------------===//
#include "src/Conversion/ONNXToKrnl/ONNXToKrnlCommon.hpp"
using namespace mlir;
// Identity values
template <>
Value getIdentityValue<ONNXMaxPoolSingleOutOp>(
ConversionPatternRewriter &rewriter, Location loc, Type type) {
return emitNegativeInfinityConstantOp(rewriter, loc, type);
}
template <>
Value mapToLowerScalarOp<ONNXMaxPoolSingleOutOp>(Operation *op,
ArrayRef<Type> result_types, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) {
auto loc = op->getLoc();
Value lhs = operands[0];
Value rhs = operands[1];
auto max = rewriter.create<CmpFOp>(loc, CmpFPredicate::OGT, lhs, rhs);
auto result = rewriter.create<SelectOp>(loc, max, lhs, rhs);
return result;
}
struct ONNXMaxPoolSingleOutOpLowering : public ConversionPattern {
ONNXMaxPoolSingleOutOpLowering(MLIRContext *ctx)
: ConversionPattern(
mlir::ONNXMaxPoolSingleOutOp::getOperationName(), 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXMaxPoolSingleOutOpOperandAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
// Match
ONNXMaxPoolSingleOutOp poolOp = llvm::dyn_cast<ONNXMaxPoolSingleOutOp>(op);
// Read kernel_shape attribute
SmallVector<int, 4> kernelShape;
auto kernelShapeAttribute = poolOp.kernel_shapeAttr();
for (auto dim : kernelShapeAttribute.getValue())
kernelShape.emplace_back(dim.cast<IntegerAttr>().getInt());
// Read strides attribute
SmallVector<int, 4> strides;
auto stridesAttribute = poolOp.stridesAttr();
for (auto stride : stridesAttribute.getValue())
strides.emplace_back(stride.cast<IntegerAttr>().getInt());
// Read ceil_mode attribute
auto ceilMode = poolOp.ceil_mode().getSExtValue();
// Read pads attribute
SmallVector<int, 4> pads;
auto padsAttribute = poolOp.padsAttr();
for (auto pad : padsAttribute.getValue())
pads.emplace_back(pad.cast<IntegerAttr>().getInt());
// Read dilations attribute
SmallVector<int, 4> dilations;
auto dilationsAttribute = poolOp.dilationsAttr();
for (auto dilation : dilationsAttribute.getValue())
dilations.emplace_back(dilation.cast<IntegerAttr>().getInt());
// Type information about the input and result of this operation.
auto inputOperand = operandAdaptor.X();
auto inputShape = inputOperand.getType().cast<MemRefType>().getShape();
auto memRefType = convertToMemRefType(*op->result_type_begin());
auto resultShape = memRefType.getShape();
auto resultElementType = memRefType.getElementType();
// Batch indices: N and C dimensions
int batchRank = 2;
// Insert an allocation and deallocation for the result of this operation.
Value alloc;
bool insertDealloc = checkInsertDealloc(op);
if (hasAllConstantDimensions(memRefType))
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc);
else {
// Compute dimensions of the result of this operation.
SmallVector<Value, 2> allocOperands;
for (int i = 0; i < batchRank; ++i) {
if (resultShape[i] < 0) {
auto dim = rewriter.create<DimOp>(loc, inputOperand, i);
allocOperands.emplace_back(dim);
}
}
Value zero, one;
if (ceilMode) {
zero = rewriter.create<ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
}
one = rewriter.create<ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
int spatialRank = resultShape.size() - batchRank;
for (int i = batchRank; i < resultShape.size(); ++i) {
if (resultShape[i] < 0) {
// dim =
// let numerator = (input + pad - (kernel - 1) * dilation - 1)
// in let denomitor = stride
// in
// if (ceilMode)
// ceil(numerator / denominator) + 1
// else
// floor(numerator / denominator) + 1
int spatialIndex = i - batchRank;
// numerator = (input + pad - (kernel - 1) * dilation - 1)
auto inputDim = rewriter.create<DimOp>(loc, inputOperand, i);
auto inputVal = rewriter.create<IndexCastOp>(
loc, inputDim, rewriter.getIntegerType(64));
int64_t padKernelDilation =
(pads[spatialIndex] + pads[spatialIndex + spatialRank]) -
(kernelShape[spatialIndex] - 1) * dilations[spatialIndex] - 1;
auto padKernelDilationVal = rewriter.create<ConstantOp>(
loc, rewriter.getIntegerAttr(
rewriter.getIntegerType(64), padKernelDilation));
auto numeratorVal =
rewriter.create<AddIOp>(loc, inputVal, padKernelDilationVal);
// denominator
auto denominatorVal = rewriter.create<ConstantOp>(
loc, rewriter.getIntegerAttr(
rewriter.getIntegerType(64), strides[spatialIndex]));
// numerator / denominator
Value dimVal =
rewriter.create<SignedDivIOp>(loc, numeratorVal, denominatorVal);
if (ceilMode) {
auto remainder = rewriter.create<SignedRemIOp>(
loc, numeratorVal, denominatorVal);
auto isZero = rewriter.create<CmpIOp>(
loc, CmpIPredicate::eq, remainder, zero);
auto dimPlusOne = rewriter.create<AddIOp>(loc, dimVal, one);
dimVal = rewriter.create<SelectOp>(loc, isZero, dimVal, dimPlusOne);
}
dimVal = rewriter.create<AddIOp>(loc, dimVal, one);
allocOperands.emplace_back(rewriter.create<IndexCastOp>(
loc, dimVal, rewriter.getIndexType()));
}
}
alloc = rewriter.create<AllocOp>(loc, memRefType, allocOperands);
if (insertDealloc) {
auto *parentBlock = alloc.getDefiningOp()->getBlock();
auto dealloc = rewriter.create<DeallocOp>(loc, alloc);
dealloc.getOperation()->moveBefore(&parentBlock->back());
}
}
// R = MaxPool(D)
//
// The input/output shapes will look like this:
//
// D (NxCxHxW) -> R (NxCxRHxRW)
//
// The loop nest will look as follows:
//
// strides = [s1, s2]
//
// for n = 0 .. N:
// for c = 0 .. C:
// for r1 = 0 .. RH:
// for r2 = 0 .. RW:
// R[n][c][r1][r2] = negative_infinity;
// for k1 = 0 .. KH:
// for k2 = 0 .. KW:
// t = D[n][c][s1 * r1 + k1 * d1][s2 * r2 + k2 * d2];
// R[n][c][r1][r2] = max(R[n][c][r1][r2], t);
//
// Naming:
// n, c, r1, r2: outer loop nest indices
// k1, k2: inner loop nest indices
// s1, s2: strides
// d1, d2: dilations
//
// TODO: handle padding.
//
// 1. Define outer loops and emit empty optimization block.
auto nOuterLoops = resultShape.size();
BuildKrnlLoop outerLoops(rewriter, loc, nOuterLoops);
outerLoops.createDefineOptimizeAndIterateOp(alloc);
rewriter.setInsertionPointToStart(outerLoops.getIterateBlock());
{
// 2. Emit the body of the outer loop nest.
SmallVector<Value, 4> resultIndices;
for (int i = 0; i < nOuterLoops; ++i)
resultIndices.emplace_back(outerLoops.getInductionVar(i));
// 2.1 Emit: R[n][c][r1][r2] = negative_infinity;
Value identity = getIdentityValue<ONNXMaxPoolSingleOutOp>(
rewriter, loc, resultElementType);
rewriter.create<StoreOp>(loc, identity, alloc, resultIndices);
// 2.2 Define inner loops.
int nInnerLoops = kernelShape.size();
BuildKrnlLoop innerLoops(rewriter, loc, nInnerLoops);
innerLoops.createDefineAndOptimizeOp();
// for Kx = 0 .. KX
for (int i = 0; i < nInnerLoops; ++i)
innerLoops.pushBounds(0, kernelShape[i]);
// 2.3 Emit inner loop nest.
innerLoops.createIterateOp();
rewriter.setInsertionPointToStart(innerLoops.getIterateBlock());
{
// 3. Emit inner loop body
// t = D[n][c][s1 * r1 + k1 * d1][s2 * r2 + k2 * d2];
// R[n][c][r1][r2] = max(R[n][c][r1][r2], t);
// 3.1 Prepare indices for accesing the data tensor.
SmallVector<Value, 4> dataIndices;
// 3.1.1 Batch indices: n, c
for (int i = 0; i < batchRank; ++i)
dataIndices.emplace_back(outerLoops.getInductionVar(i));
// 3.1.2 Insert spatial indices: sX * rX + kX * dX
for (int i = batchRank; i < nOuterLoops; ++i) {
// Get index along the inner loop's induction variables.
// It is used to obtain kernel/pad/stride/dilation index.
int j = i - batchRank;
Value spatialIndex = outerLoops.getInductionVar(i);
// If strides are present (not default) then emit the correct access
// index.
// sX *= rX
if (strides[i - batchRank] > 1) {
auto strideIndex = emitConstantOp(
rewriter, loc, rewriter.getIndexType(), strides[j]);
spatialIndex = rewriter.create<MulIOp>(
loc, strideIndex, outerLoops.getInductionVar(i));
}
// Dilate the kernel index only if the dilation value is not one (not
// default). Otherwise, just add kernelIndex.
auto kernelIndex = innerLoops.getInductionVar(j);
if (dilations[j] > 1) {
// sX += dX * kW
auto dilationIndex = emitConstantOp(
rewriter, loc, rewriter.getIndexType(), dilations[j]);
auto dilationKernelIndex =
rewriter.create<MulIOp>(loc, dilationIndex, kernelIndex);
spatialIndex =
rewriter.create<AddIOp>(loc, spatialIndex, dilationKernelIndex);
} else {
// sX += kX
spatialIndex =
rewriter.create<AddIOp>(loc, spatialIndex, kernelIndex);
}
// If ceil mode or dilation is enabled, then the calculated access
// index may exceed its dimension. In such a case, we will use the
// maximum index, which causes multiple visits to the element of the
// maximum index.
// TODO: Avoid multiple visits.
// Example of out-of-bound.
// - Given a 5x5 input X
// X = [[0, 0, 0, 0, 0],
// [1, 1, 1, 1, 1],
// [2, 2, 2, 2, 2],
// [3, 3, 3, 3, 3],
// [4, 4, 4, 4, 4]]
// - Do MaxPool with strides=[2, 2], kernel=[2, 2], ceilMode=true,
// output is a 3x3 array:
// Y = [[1, 1, 1],
// [3, 3, 3],
// [4, 4, 4]]
// - When computing Y[2, 0]:
// - In case of kernelIndex = 1, stride = 2
// - No dilation: spatialIndex = 2 * 2 + 1 = 5
// => out of bound
// - dilation = 2: spatialIndex = 2 * 2 + 2 * 1 = 6
// => out of bound
if (dilations[j] > 1 or ceilMode) {
Value upperIndex;
if (inputShape[i] < 0) {
Value inputDim = rewriter.create<DimOp>(loc, inputOperand, i);
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
upperIndex = rewriter.create<SubIOp>(loc, inputDim, one);
} else {
upperIndex =
rewriter.create<ConstantIndexOp>(loc, inputShape[i] - 1);
}
auto greaterCondition = rewriter.create<CmpIOp>(
loc, CmpIPredicate::sgt, spatialIndex, upperIndex);
spatialIndex = rewriter.create<SelectOp>(
loc, greaterCondition, upperIndex, spatialIndex);
}
dataIndices.emplace_back(spatialIndex);
}
// 3.2 Do pooling.
auto loadData = rewriter.create<LoadOp>(loc, inputOperand, dataIndices);
auto loadPartialResult =
rewriter.create<LoadOp>(loc, alloc, resultIndices);
Value result = mapToLowerScalarOp<ONNXMaxPoolSingleOutOp>(
op, resultElementType, {loadPartialResult, loadData}, rewriter);
rewriter.create<StoreOp>(loc, result, alloc, resultIndices);
}
}
rewriter.replaceOp(op, alloc);
return matchSuccess();
}
};
void populateLoweringONNXPoolingOpPattern(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns.insert<ONNXMaxPoolSingleOutOpLowering>(ctx);
}