onnx-mlir/test/backend/test.py

336 lines
10 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
import sys
import unittest
import onnx.backend.base
import onnx.backend.test
from onnx.backend.base import Device, DeviceType
import subprocess
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
import test_config
VERBOSE = bool(os.environ.get("VERBOSE"))
CXX = test_config.CXX_PATH
ONNF = os.path.join(test_config.ONNF_BUILD_PATH, "bin/onnf")
LLC = os.path.join(test_config.LLVM_PROJ_BUILD_PATH, "bin/llc")
# Make lib folder under build directory visible in PYTHONPATH
doc_check_base_dir = os.path.dirname(os.path.realpath(__file__))
RUNTIME_DIR = os.path.join(test_config.ONNF_BUILD_PATH, "lib")
sys.path.append(RUNTIME_DIR)
from pyruntime import ExecutionSession
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
def execute_commands(cmds):
if (VERBOSE):
print(" ".join(cmds))
subprocess.run(cmds, stdout=subprocess.PIPE)
class DummyBackend(onnx.backend.base.Backend):
@classmethod
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
def prepare(cls, model, device='CPU', **kwargs):
super(DummyBackend, cls).prepare(model, device, **kwargs)
# Save model to disk as temp_model.onnx.
onnx.save(model, "temp_model.onnx")
# Call frontend to process temp_model.onnx, bit code will be generated.
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
execute_commands([ONNF, "temp_model.onnx"])
# Call llc to generate object file from bitcode.
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
execute_commands(
[LLC, "-filetype=obj", "-relocation-model=pic", "model.bc"])
# Generate shared library from object file, linking with c runtime.
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
execute_commands([
CXX, "-shared", "-fPIC", "model.o", "-o", "model.so",
"-L" + RUNTIME_DIR, "-lcruntime"
])
return ExecutionSession("./model.so", "_dyn_entry_point_main_graph")
@classmethod
def supports_device(cls, device):
d = Device(device)
if d.type == DeviceType.CPU:
return True
return False
backend_test = onnx.backend.test.BackendTest(DummyBackend, __name__)
# Test directories:
# https://github.com/onnx/onnx/tree/master/onnx/backend/test/data/node
test_to_enable = [
# Add Op:
"test_add_cpu",
"test_add_bcast_cpu",
# And Op:
# Sub Op:
"test_sub_cpu",
"test_sub_bcast_cpu",
"test_sub_example_cpu",
# Cosh Op:
"test_cosh_cpu",
"test_cosh_example_cpu",
# Div Op:
"test_div_cpu",
"test_div_bcast_cpu",
"test_div_example_cpu",
# Elu Op:
"test_elu_cpu",
"test_elu_default_cpu",
"test_elu_example_cpu",
# Exp Op:
"test_exp_cpu",
"test_exp_example_cpu",
# Gemm Op:
"test_gemm_all_attributes_cpu",
"test_gemm_alpha_cpu",
"test_gemm_beta_cpu",
"test_gemm_default_matrix_bias_cpu",
"test_gemm_default_no_bias_cpu",
"test_gemm_default_scalar_bias_cpu",
"test_gemm_default_single_elem_vector_bias_cpu",
"test_gemm_default_vector_bias_cpu",
"test_gemm_default_zero_bias_cpu",
"test_gemm_transposeA_cpu",
"test_gemm_transposeB_cpu",
# Hard Sigmoid Op:
"test_hardsigmoid_cpu",
"test_hardsigmoid_default_cpu",
"test_hardsigmoid_example_cpu",
# Leaky Relu Op:
"test_leakyrelu_cpu",
"test_leakyrelu_default_cpu",
"test_leakyrelu_example_cpu",
# Max Op:
"test_max_example_cpu",
"test_max_one_input_cpu",
"test_max_two_inputs_cpu",
# Min Op:
"test_min_example_cpu",
"test_min_one_input_cpu",
"test_min_two_inputs_cpu",
# Mul Op:
"test_mul_cpu",
"test_mul_bcast_cpu",
"test_mul_example_cpu",
# Relu Op:
"test_relu_cpu",
# ReduceMax Op:
"test_reduce_max_default_axes_keepdim_example_cpu",
"test_reduce_max_default_axes_keepdims_random_cpu",
"test_reduce_max_do_not_keepdims_example_cpu",
"test_reduce_max_do_not_keepdims_random_cpu",
"test_reduce_max_keepdims_example_cpu",
"test_reduce_max_keepdims_random_cpu",
"test_reduce_max_negative_axes_keepdims_example_cpu",
"test_reduce_max_negative_axes_keepdims_random_cpu",
# ReduceMin Op:
"test_reduce_min_default_axes_keepdims_example_cpu",
"test_reduce_min_default_axes_keepdims_random_cpu",
"test_reduce_min_do_not_keepdims_example_cpu",
"test_reduce_min_do_not_keepdims_random_cpu",
"test_reduce_min_keepdims_example_cpu",
"test_reduce_min_keepdims_random_cpu",
"test_reduce_min_negative_axes_keepdims_example_cpu",
"test_reduce_min_negative_axes_keepdims_random_cpu",
# ReduceProd Op:
"test_reduce_prod_default_axes_keepdims_example_cpu",
"test_reduce_prod_default_axes_keepdims_random_cpu",
"test_reduce_prod_do_not_keepdims_example_cpu",
"test_reduce_prod_do_not_keepdims_random_cpu",
"test_reduce_prod_keepdims_example_cpu",
"test_reduce_prod_keepdims_random_cpu",
"test_reduce_prod_negative_axes_keepdims_example_cpu",
"test_reduce_prod_negative_axes_keepdims_random_cpu",
# ReduceSum Op:
"test_reduce_sum_default_axes_keepdims_example_cpu",
"test_reduce_sum_default_axes_keepdims_random_cpu",
"test_reduce_sum_do_not_keepdims_example_cpu",
"test_reduce_sum_do_not_keepdims_random_cpu",
"test_reduce_sum_keepdims_example_cpu",
"test_reduce_sum_keepdims_random_cpu",
"test_reduce_sum_negative_axes_keepdims_example_cpu",
"test_reduce_sum_negative_axes_keepdims_random_cpu",
# ReduceL1: this op depends on ONNXAbsOp so we will turn these tests on once ONNXAbsOp is implemented.
#"test_reduce_l1_default_axes_keepdims_example_cpu",
#"test_reduce_l1_default_axes_keepdims_random_cpu",
#"test_reduce_l1_do_not_keepdims_example_cpu",
#"test_reduce_l1_do_not_keepdims_random_cpu",
#"test_reduce_l1_keep_dims_example_cpu",
#"test_reduce_l1_keep_dims_random_cpu",
#"test_reduce_l1_negative_axes_keep_dims_example_cpu",
#"test_reduce_l1_negative_axes_keep_dims_random_cpu",
# ReduceL2
"test_reduce_l2_default_axes_keepdims_example_cpu",
"test_reduce_l2_default_axes_keepdims_random_cpu",
"test_reduce_l2_do_not_keepdims_example_cpu",
"test_reduce_l2_do_not_keepdims_random_cpu",
"test_reduce_l2_keep_dims_example_cpu",
"test_reduce_l2_keep_dims_random_cpu",
"test_reduce_l2_negative_axes_keep_dims_example_cpu",
"test_reduce_l2_negative_axes_keep_dims_random_cpu",
# ReduceLogSum
"test_reduce_log_sum_asc_axes_cpu",
"test_reduce_log_sum_cpu",
"test_reduce_log_sum_default_cpu",
"test_reduce_log_sum_desc_axes_cpu",
# ReduceLogSumExp
"test_reduce_log_sum_exp_default_axes_keepdims_example_cpu",
"test_reduce_log_sum_exp_default_axes_keepdims_random_cpu",
"test_reduce_log_sum_exp_do_not_keepdims_example_cpu",
"test_reduce_log_sum_exp_do_not_keepdims_random_cpu",
"test_reduce_log_sum_exp_keepdims_example_cpu",
"test_reduce_log_sum_exp_keepdims_random_cpu",
"test_reduce_log_sum_exp_negative_axes_keepdims_example_cpu",
"test_reduce_log_sum_exp_negative_axes_keepdims_random_cpu",
"test_reduce_log_sum_negative_axes_cpu",
# ReduceSumSquare
"test_reduce_sum_square_default_axes_keepdims_example_cpu",
"test_reduce_sum_square_default_axes_keepdims_random_cpu",
"test_reduce_sum_square_do_not_keepdims_example_cpu",
"test_reduce_sum_square_do_not_keepdims_random_cpu",
"test_reduce_sum_square_keepdims_example_cpu",
"test_reduce_sum_square_keepdims_random_cpu",
"test_reduce_sum_square_negative_axes_keepdims_example_cpu",
"test_reduce_sum_square_negative_axes_keepdims_random_cpu",
# Selu Op:
"test_selu_cpu",
"test_selu_default_cpu",
"test_selu_example_cpu",
# Sigmoid Op:
"test_sigmoid_cpu",
"test_sigmoid_example_cpu",
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
# Softmax Op:
"test_softmax_axis_0_cpu",
"test_softmax_axis_1_cpu",
"test_softmax_axis_2_cpu",
"test_softmax_default_axis_cpu",
"test_softmax_example_cpu",
"test_softmax_large_number_cpu",
# Sqrt Op:
"test_sqrt_cpu",
"test_sqrt_example_cpu",
# Sum Op:
"test_sum_example_cpu",
"test_sum_one_input_cpu",
"test_sum_two_inputs_cpu",
# Unsqueeze Op:
"test_unsqueeze_axis_0_cpu",
"test_unsqueeze_axis_1_cpu",
"test_unsqueeze_axis_2_cpu",
"test_unsqueeze_axis_3_cpu",
"test_unsqueeze_negative_axes_cpu",
"test_unsqueeze_three_axes_cpu",
"test_unsqueeze_two_axes_cpu",
# "test_unsqueeze_unsorted_axes_cpu",
# Reciprocal Op:
2020-01-22 10:41:22 +08:00
"test_reciprocal_cpu",
"test_reciprocal_example_cpu",
# SoftplusOp:
"test_softplus_cpu",
"test_softplus_example_cpu",
# SoftsignOp:
"test_softsign_cpu",
"test_softsign_example_cpu",
2020-01-28 23:21:08 +08:00
# ReshapeOp:
"test_reshape_extended_dims_cpu",
"test_reshape_negative_dim_cpu",
"test_reshape_negative_extended_dims_cpu",
"test_reshape_one_dim_cpu",
"test_reshape_reduced_dims_cpu",
2020-01-28 23:21:08 +08:00
"test_reshape_reordered_all_dims_cpu",
"test_reshape_reordered_last_dims_cpu",
"test_reshape_zero_and_negative_dim_cpu",
"test_reshape_zero_dim_cpu",
# Transpose
"test_transpose_default_cpu",
"test_transpose_all_permutations_0_cpu",
"test_transpose_all_permutations_1_cpu",
"test_transpose_all_permutations_2_cpu",
"test_transpose_all_permutations_3_cpu",
"test_transpose_all_permutations_4_cpu",
"test_transpose_all_permutations_5_cpu",
# Conv
"test_basic_conv_without_padding_cpu",
"test_conv_with_strides_no_padding_cpu",
# Sign Op:
"test_sign_cpu",
# MatmulOp
"test_matmul_2d_cpu",
"test_matmul_3d_cpu",
"test_matmul_4d_cpu",
# BatchNormalization (test mode)
"test_batchnorm_epsilon_cpu",
"test_batchnorm_example_cpu",
# Pooling
"test_maxpool_1d_default_cpu",
"test_maxpool_2d_ceil_cpu",
"test_maxpool_2d_default_cpu",
"test_maxpool_2d_strides_cpu",
"test_maxpool_3d_default_cpu",
]
# Extract name of all test cases.
import inspect
all_tests = inspect.getmembers(
backend_test.test_cases["OnnxBackendNodeModelTest"])
all_test_names = list(map(lambda x: x[0], all_tests))
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
# Ensure that test names specified in test_to_enable actually exist.
for test_name in test_to_enable:
assert test_name in all_test_names, """test name {} not found, it is likely
that you may have misspelled the test name or the specified test does not
exist in the version of onnx package you installed.""".format(
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
test_name)
backend_test.include(r"^{}$".format(test_name))
# import all test cases at global scope to make them visible to python.unittest
globals().update(backend_test.test_cases)
if __name__ == '__main__':
unittest.main()