onnx-mlir/test/backend/test.py

446 lines
14 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
import sys
import unittest
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
import warnings
import onnx.backend.base
import onnx.backend.test
from onnx.backend.base import Device, DeviceType
import subprocess
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
import test_config
VERBOSE = bool(os.environ.get("VERBOSE"))
CXX = test_config.CXX_PATH
ONNX_MLIR = os.path.join(test_config.ONNX_MLIR_BUILD_PATH, "bin/onnx-mlir")
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
LLC = os.path.join(test_config.LLVM_PROJ_BUILD_PATH, "bin/llc")
# Make lib folder under build directory visible in PYTHONPATH
doc_check_base_dir = os.path.dirname(os.path.realpath(__file__))
RUNTIME_DIR = os.path.join(test_config.ONNX_MLIR_BUILD_PATH, "lib")
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
sys.path.append(RUNTIME_DIR)
from PyRuntime import ExecutionSession
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
def execute_commands(cmds):
if (VERBOSE):
print(" ".join(cmds))
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
subprocess.run(cmds)
# There are two issues, which necessitates the adoption of this endianness
# aware wrapper around Execution Session:
# 1. Input arrays are given sometimes in native byte order, sometime in
# LE byte order, and as soon as the python array enters into py::array
# C++ objects through pybind, we will no longer be able to query their
# endianness. So we must intercept the inputs and convert them into
# native endianness.
# 2. Output arrays are compared with reference outputs, the comparison
# unfortunately includes checking that our outputs and reference outputs
# share the same endianness. So we try to figure out what is the desired
# reference output endianness, and convert our outputs to this desired
# endianness.
class EndiannessAwareExecutionSession(ExecutionSession):
def __init__(self, path, entry_point):
super().__init__(path, entry_point)
def is_input_le(self, inputs):
inputs_endianness = list(map(lambda x: x.dtype.byteorder, inputs))
endianness_is_consistent = len(set(inputs_endianness)) <= 1
assert endianness_is_consistent, \
"Input arrays contain a mixture of endianness configuration."
sys_is_le = sys.byteorder == 'little'
# To interpret character symbols indicating endianness:
# https://numpy.org/doc/stable/reference/generated/numpy.dtype.byteorder.html
explicitly_le = inputs_endianness[0] == "<"
implicitly_le = (inputs_endianness[0] == "=" and sys_is_le)
return explicitly_le or implicitly_le
def run(self, inputs, **kwargs):
if len(inputs):
# Deduce desired endianness of output from inputs.
sys_is_le = sys.byteorder == 'little'
inp_is_le = self.is_input_le(inputs)
if (sys_is_le != inp_is_le):
inputs = list(
map(lambda x: x.byteswap().newbyteorder(), inputs))
outputs = super().run(inputs)
if (sys_is_le != inp_is_le):
outputs = list(
map(lambda x: x.byteswap().newbyteorder(), outputs))
return outputs
else:
# Can't deduce desired output endianess, fingers crossed.
warnings.warn(
"Cannot deduce desired output endianness, using native endianness by default."
)
return super().run(inputs)
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
class DummyBackend(onnx.backend.base.Backend):
@classmethod
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
def prepare(cls, model, device='CPU', **kwargs):
super(DummyBackend, cls).prepare(model, device, **kwargs)
# Save model to disk as temp_model.onnx.
onnx.save(model, "temp_model.onnx")
# Call frontend to process temp_model.onnx, bit code will be generated.
execute_commands([ONNX_MLIR, "temp_model.onnx"])
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
return EndiannessAwareExecutionSession("./temp_model.so",
"_dyn_entry_point_main_graph")
@classmethod
def supports_device(cls, device):
d = Device(device)
if d.type == DeviceType.CPU:
return True
return False
backend_test = onnx.backend.test.BackendTest(DummyBackend, __name__)
# Test directories:
# https://github.com/onnx/onnx/tree/master/onnx/backend/test/data/node
test_to_enable = [
# Abs Op:
"test_abs_cpu",
# Add Op:
"test_add_cpu",
"test_add_bcast_cpu",
# And Op:
# Sub Op:
"test_sub_cpu",
"test_sub_bcast_cpu",
"test_sub_example_cpu",
# Cosh Op:
"test_cosh_cpu",
"test_cosh_example_cpu",
# Concat
"test_concat_1d_axis_0_cpu",
"test_concat_2d_axis_0_cpu",
"test_concat_2d_axis_1_cpu",
"test_concat_3d_axis_0_cpu",
"test_concat_3d_axis_1_cpu",
"test_concat_3d_axis_2_cpu",
"test_concat_1d_axis_negative_1_cpu",
"test_concat_2d_axis_negative_1_cpu",
"test_concat_2d_axis_negative_2_cpu",
"test_concat_3d_axis_negative_1_cpu",
"test_concat_3d_axis_negative_2_cpu",
"test_concat_3d_axis_negative_3_cpu",
# Tanh:
"test_tanh_cpu",
"test_tanh_example_cpu",
# Div Op:
"test_div_cpu",
"test_div_bcast_cpu",
"test_div_example_cpu",
# Elu Op:
"test_elu_cpu",
"test_elu_default_cpu",
"test_elu_example_cpu",
# Exp Op:
"test_exp_cpu",
"test_exp_example_cpu",
# Gemm Op:
"test_gemm_all_attributes_cpu",
"test_gemm_alpha_cpu",
"test_gemm_beta_cpu",
"test_gemm_default_matrix_bias_cpu",
"test_gemm_default_no_bias_cpu",
"test_gemm_default_scalar_bias_cpu",
"test_gemm_default_single_elem_vector_bias_cpu",
"test_gemm_default_vector_bias_cpu",
"test_gemm_default_zero_bias_cpu",
"test_gemm_transposeA_cpu",
"test_gemm_transposeB_cpu",
# Hard Sigmoid Op:
"test_hardsigmoid_cpu",
"test_hardsigmoid_default_cpu",
"test_hardsigmoid_example_cpu",
# Leaky Relu Op:
"test_leakyrelu_cpu",
"test_leakyrelu_default_cpu",
"test_leakyrelu_example_cpu",
# Max Op:
"test_max_example_cpu",
"test_max_one_input_cpu",
"test_max_two_inputs_cpu",
# Min Op:
"test_min_example_cpu",
"test_min_one_input_cpu",
"test_min_two_inputs_cpu",
# Mul Op:
"test_mul_cpu",
"test_mul_bcast_cpu",
"test_mul_example_cpu",
# Relu Op:
"test_relu_cpu",
# ReduceMax Op:
"test_reduce_max_default_axes_keepdim_example_cpu",
"test_reduce_max_default_axes_keepdims_random_cpu",
"test_reduce_max_do_not_keepdims_example_cpu",
"test_reduce_max_do_not_keepdims_random_cpu",
"test_reduce_max_keepdims_example_cpu",
"test_reduce_max_keepdims_random_cpu",
"test_reduce_max_negative_axes_keepdims_example_cpu",
"test_reduce_max_negative_axes_keepdims_random_cpu",
# ReduceMin Op:
"test_reduce_min_default_axes_keepdims_example_cpu",
"test_reduce_min_default_axes_keepdims_random_cpu",
"test_reduce_min_do_not_keepdims_example_cpu",
"test_reduce_min_do_not_keepdims_random_cpu",
"test_reduce_min_keepdims_example_cpu",
"test_reduce_min_keepdims_random_cpu",
"test_reduce_min_negative_axes_keepdims_example_cpu",
"test_reduce_min_negative_axes_keepdims_random_cpu",
# ReduceProd Op:
"test_reduce_prod_default_axes_keepdims_example_cpu",
"test_reduce_prod_default_axes_keepdims_random_cpu",
"test_reduce_prod_do_not_keepdims_example_cpu",
"test_reduce_prod_do_not_keepdims_random_cpu",
"test_reduce_prod_keepdims_example_cpu",
"test_reduce_prod_keepdims_random_cpu",
"test_reduce_prod_negative_axes_keepdims_example_cpu",
"test_reduce_prod_negative_axes_keepdims_random_cpu",
# ReduceSum Op:
"test_reduce_sum_default_axes_keepdims_example_cpu",
"test_reduce_sum_default_axes_keepdims_random_cpu",
"test_reduce_sum_do_not_keepdims_example_cpu",
"test_reduce_sum_do_not_keepdims_random_cpu",
"test_reduce_sum_keepdims_example_cpu",
"test_reduce_sum_keepdims_random_cpu",
"test_reduce_sum_negative_axes_keepdims_example_cpu",
"test_reduce_sum_negative_axes_keepdims_random_cpu",
# ReduceL1
"test_reduce_l1_default_axes_keepdims_example_cpu",
"test_reduce_l1_default_axes_keepdims_random_cpu",
"test_reduce_l1_do_not_keepdims_example_cpu",
"test_reduce_l1_do_not_keepdims_random_cpu",
"test_reduce_l1_keep_dims_example_cpu",
"test_reduce_l1_keep_dims_random_cpu",
"test_reduce_l1_negative_axes_keep_dims_example_cpu",
"test_reduce_l1_negative_axes_keep_dims_random_cpu",
# ReduceL2
"test_reduce_l2_default_axes_keepdims_example_cpu",
"test_reduce_l2_default_axes_keepdims_random_cpu",
"test_reduce_l2_do_not_keepdims_example_cpu",
"test_reduce_l2_do_not_keepdims_random_cpu",
"test_reduce_l2_keep_dims_example_cpu",
"test_reduce_l2_keep_dims_random_cpu",
"test_reduce_l2_negative_axes_keep_dims_example_cpu",
"test_reduce_l2_negative_axes_keep_dims_random_cpu",
# ReduceLogSum
"test_reduce_log_sum_asc_axes_cpu",
"test_reduce_log_sum_cpu",
"test_reduce_log_sum_default_cpu",
"test_reduce_log_sum_desc_axes_cpu",
# ReduceLogSumExp
"test_reduce_log_sum_exp_default_axes_keepdims_example_cpu",
"test_reduce_log_sum_exp_default_axes_keepdims_random_cpu",
"test_reduce_log_sum_exp_do_not_keepdims_example_cpu",
"test_reduce_log_sum_exp_do_not_keepdims_random_cpu",
"test_reduce_log_sum_exp_keepdims_example_cpu",
"test_reduce_log_sum_exp_keepdims_random_cpu",
"test_reduce_log_sum_exp_negative_axes_keepdims_example_cpu",
"test_reduce_log_sum_exp_negative_axes_keepdims_random_cpu",
"test_reduce_log_sum_negative_axes_cpu",
# ReduceSumSquare
"test_reduce_sum_square_default_axes_keepdims_example_cpu",
"test_reduce_sum_square_default_axes_keepdims_random_cpu",
"test_reduce_sum_square_do_not_keepdims_example_cpu",
"test_reduce_sum_square_do_not_keepdims_random_cpu",
"test_reduce_sum_square_keepdims_example_cpu",
"test_reduce_sum_square_keepdims_random_cpu",
"test_reduce_sum_square_negative_axes_keepdims_example_cpu",
"test_reduce_sum_square_negative_axes_keepdims_random_cpu",
# Selu Op:
"test_selu_cpu",
"test_selu_default_cpu",
"test_selu_example_cpu",
# Sigmoid Op:
"test_sigmoid_cpu",
"test_sigmoid_example_cpu",
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
# Softmax Op:
"test_softmax_axis_0_cpu",
"test_softmax_axis_1_cpu",
"test_softmax_axis_2_cpu",
"test_softmax_default_axis_cpu",
"test_softmax_example_cpu",
"test_softmax_large_number_cpu",
# Sqrt Op:
"test_sqrt_cpu",
"test_sqrt_example_cpu",
# Sum Op:
"test_sum_example_cpu",
"test_sum_one_input_cpu",
"test_sum_two_inputs_cpu",
# Unsqueeze Op:
"test_unsqueeze_axis_0_cpu",
"test_unsqueeze_axis_1_cpu",
"test_unsqueeze_axis_2_cpu",
"test_unsqueeze_axis_3_cpu",
"test_unsqueeze_negative_axes_cpu",
"test_unsqueeze_three_axes_cpu",
"test_unsqueeze_two_axes_cpu",
# "test_unsqueeze_unsorted_axes_cpu",
# Reciprocal Op:
2020-01-22 10:41:22 +08:00
"test_reciprocal_cpu",
"test_reciprocal_example_cpu",
# SoftplusOp:
"test_softplus_cpu",
"test_softplus_example_cpu",
# SoftsignOp:
"test_softsign_cpu",
"test_softsign_example_cpu",
2020-01-28 23:21:08 +08:00
# ReshapeOp:
"test_reshape_extended_dims_cpu",
"test_reshape_negative_dim_cpu",
"test_reshape_negative_extended_dims_cpu",
"test_reshape_one_dim_cpu",
"test_reshape_reduced_dims_cpu",
2020-01-28 23:21:08 +08:00
"test_reshape_reordered_all_dims_cpu",
"test_reshape_reordered_last_dims_cpu",
"test_reshape_zero_and_negative_dim_cpu",
"test_reshape_zero_dim_cpu",
# Transpose
"test_transpose_default_cpu",
"test_transpose_all_permutations_0_cpu",
"test_transpose_all_permutations_1_cpu",
"test_transpose_all_permutations_2_cpu",
"test_transpose_all_permutations_3_cpu",
"test_transpose_all_permutations_4_cpu",
"test_transpose_all_permutations_5_cpu",
# Conv
"test_basic_conv_without_padding_cpu",
"test_conv_with_strides_no_padding_cpu",
# Sign Op:
"test_sign_cpu",
# MatmulOp
"test_matmul_2d_cpu",
"test_matmul_3d_cpu",
"test_matmul_4d_cpu",
# BatchNormalization (test mode)
"test_batchnorm_epsilon_cpu",
"test_batchnorm_example_cpu",
# MaxPoolSingleOut
"test_maxpool_1d_default_cpu",
"test_maxpool_2d_ceil_cpu",
"test_maxpool_2d_default_cpu",
"test_maxpool_2d_dilations_cpu",
"test_maxpool_2d_pads_cpu",
"test_maxpool_2d_precomputed_pads_cpu",
"test_maxpool_2d_precomputed_same_upper_cpu",
"test_maxpool_2d_precomputed_strides_cpu",
"test_maxpool_2d_same_lower_cpu",
"test_maxpool_2d_same_upper_cpu",
"test_maxpool_2d_strides_cpu",
"test_maxpool_3d_default_cpu",
# AveragePool
"test_averagepool_1d_default_cpu",
"test_averagepool_2d_ceil_cpu",
"test_averagepool_2d_default_cpu",
"test_averagepool_2d_pads_count_include_pad_cpu",
"test_averagepool_2d_pads_cpu",
"test_averagepool_2d_precomputed_pads_count_include_pad_cpu",
"test_averagepool_2d_precomputed_pads_cpu",
"test_averagepool_2d_precomputed_same_upper_cpu",
"test_averagepool_2d_precomputed_strides_cpu",
"test_averagepool_2d_same_lower_cpu",
"test_averagepool_2d_same_upper_cpu",
"test_averagepool_2d_strides_cpu",
"test_averagepool_3d_default_cpu",
2020-05-13 21:08:06 +08:00
# LSTM
"test_lstm_defaults_cpu",
"test_lstm_with_initial_bias_cpu",
"test_lstm_with_peepholes_cpu",
# Squeeze
"test_squeeze_cpu",
"test_squeeze_negative_axes_cpu",
# Split
"test_split_equal_parts_1d_cpu",
"test_split_equal_parts_2d_cpu",
"test_split_equal_parts_default_axis_cpu",
"test_split_variable_parts_1d_cpu",
"test_split_variable_parts_2d_cpu",
"test_split_variable_parts_default_axis_cpu",
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
# Model
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
"test_resnet50_cpu",
"test_vgg19_cpu",
"test_shufflenet_cpu",
]
# Extract name of all test cases.
import inspect
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
all_tests = []
all_tests += inspect.getmembers(
backend_test.test_cases["OnnxBackendRealModelTest"])
all_tests += inspect.getmembers(
backend_test.test_cases["OnnxBackendNodeModelTest"])
all_test_names = list(map(lambda x: x[0], all_tests))
Enable e2e tests (#29) * Sync with latest MLIR. * Enable ONNX backend tests as a means to test ONNF lowering end-to-end. * Install ONNX using quiet mode. * Remove debug comments. * Install ONNX from third_party/onnx. * Check python version and fix pip command for installing ONNX. * Using --user install option to prevent permission denied. * Remove unused imports. * Try using stock ONNX pip package as there are more tests in them. * Pip got stuck building wheels, try sudo. * Use verbose install to debug. * Invalidate cache to build LLVM tools. * Fix mlir installation script location. * Debug to locate ONNF. * Sanity check. * Check out ONNF code first. * Use verbose LIT output. * 1. Update documentation to always use verbose LIT. 2. Update krnl ops to reflect new affine map attribute syntax. * See if conda exists * Install ONNX by manually cloning the repo. * Install cmake first. * Using sudo priviledge when installing. * Limit build parallelism. * Limit parallelism. * Larger memory. * Install onnx package with pip. * Build MLIR tools. * Invalidate cache. * Compile model.so with -fPIC. * Remove module dump to get concise debug output. * Print command before executing. * Use quiet install mode to reduce logging. * Use -relocation-model=pic to generate position independent code. * 1. Remove MAKEFLAGS because now buildbot has enough memory. 2. Run DocCheck as a last step. * 1. Add verbose mode for backtend test. * When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk. * Do not pass MakeFlags to CMake. * Add more explaination for posible reasons of failing to identify tests.
2020-01-21 01:30:08 +08:00
# Ensure that test names specified in test_to_enable actually exist.
for test_name in test_to_enable:
assert test_name in all_test_names, """test name {} not found, it is likely
that you may have misspelled the test name or the specified test does not
Compiling Models with Large Constant Arrays (#146) * PoC works. * MNist works. * Clean up. * Fix test. * Make Linux work. * Use consistent symbol name. * Fix variable name. * Fix array addr access. * Bug fix. * Bug fix. * install before running e2e tests. * Fix build config. * Use sudo when installing. * Make embeddedDataLoader position independent. * Enable ResNet50. * Format code. * Format MainUtil. * Try not using sudo to install. * Supply runtime dir via environment variable. * Dump problematic operation. * Dump entire function. * Debug. * Dump input. * Dump constant op. * Debug. * Debug. * Debug. * Print to stderr. * take care of endianness. * Use endianness-aware execution session. * Fix ZLinux error. * Include warning when desired output endianness can't be deduced. * Remove debug code. * Remove debug code in shape inference. * Support binary-decoder for testing constants packing. * Support filename, move-to-file, elision-threshold configurations in constant packing pass for easy testing. * Add lit test, fix lit test type mismatch. * Add more consts packing tests. * Ensure intermediate files are properly cleaned up. * No need for constant elimination. * Link with threading libraries. * Remove debug code. * Format code. * More tests. * test nit. * Remove debug code. * Reduce hard-coded constants. * Use temporary and unique working directory for hosting model parameters. * Test if it works. * Try to find objcopy. * Rename symbols using objcopy. * Move sanitized name to linux section. * Use verbose mode for debugging. * Disambiguate pass constructor. * Fix symbol name. * Use Command API to build and execute commands. * Move linux to use Command API. * Fix reset args. * Execute redefine sym. * Format code. * Do not use verbose mode for CircleCI. * Remove debug code. * Prettify code, add comments. * getSegmentData -> getEmbeddedConstPool * vector -> std::vector. * Make sure we properly clean up intermediate files. * Fix test cases. * Add runtime directory. * Trigger rebuild. * [Merge with master] fix debug script. * Diable affine fusion pass for now. * Support generic fallback const packing mechanism. * Remove debug code. * Handle the case where objcopy is not available. * Fix Windows missing types. * Support int64. * Copy packed constant to a local directory for non-Linux/Mac platforms. * Nit: remove debug code, refactor const pack preprocessing out as a separate function. * Cannot make preprocessConstPack a standalone function because file removers are stack-allocated, and they are deallocated prematurely when function stack gets popped, deleteing intermediate files too early. * Don't require executable filename. * Import ONNX data types directly. * Fix LIT test. * Bug fix, use moved string value. * Remove redundant filenames. * Fix CMake script. * Embed endianness information as a symbol, and check during runtime. * More comments, update lit tests. * Fix lit test on BE machine. * Copyright notices.
2020-06-12 10:27:05 +08:00
exist in the version of onnx package you installed.""".format(test_name)
backend_test.include(r"^{}$".format(test_name))
# import all test cases at global scope to make them visible to python.unittest
globals().update(backend_test.test_cases)
if __name__ == '__main__':
unittest.main()