Lower convolution to KRNL dialect. (#65)
* Ensure data shape is at least 4. * First version of convolution. * Simplify code for KRNL lowering. * Add test without padding or strides. * Refactor code for lowering frontend operations to KRNL dialect. * Add test for conv with no bias and no padding. * Add test with group greater than one. * Address comment.
This commit is contained in:
parent
0564c0eaef
commit
0272451521
|
@ -628,6 +628,10 @@ void ONNXConvNoBiasOp::inferShapes() {
|
|||
auto dataShape = dataTy.getShape();
|
||||
auto weightShape = weightTy.getShape();
|
||||
|
||||
// Lowest ranked input supported is of shape (N x C x H x W).
|
||||
if (dataShape.size() < 4)
|
||||
emitError("Data input shape must be at least (NxCxHxW).");
|
||||
|
||||
// Check that shape of weight and data have same length.
|
||||
if (dataShape.size() != weightShape.size())
|
||||
emitError("Weight size not compatible with data size.");
|
||||
|
|
|
@ -130,6 +130,78 @@ static bool checkInsertDealloc(Operation *currentOp) {
|
|||
return insertDealloc;
|
||||
}
|
||||
|
||||
// Add bounds associated with the op operand to the KRNL iteration pack.
|
||||
// Dynamic dimenions are supported.
|
||||
static void addDimensionToPack(ConversionPatternRewriter &rewriter,
|
||||
Location loc, KrnlIterateOperandPack &pack, Value operand, int index) {
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
if (shape[index] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operand, index).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(shape[index]);
|
||||
}
|
||||
}
|
||||
|
||||
// Function that defines the KRNL dialect loops and their respective
|
||||
// optimized version.
|
||||
static KrnlOptimizeLoopsOp emitOptimizedLoops(
|
||||
ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops, std::vector<Value> &optimizedLoops,
|
||||
int64_t numLoops) {
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, numLoops);
|
||||
loops.reserve(numLoops);
|
||||
for (auto result : loopsOp.getResults())
|
||||
loops.push_back(result);
|
||||
|
||||
// Define optimized version of the loops.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, numLoops);
|
||||
optimizedLoops.reserve(numLoops);
|
||||
for (auto result : optimizedLoopsOp.getResults())
|
||||
optimizedLoops.push_back(result);
|
||||
|
||||
return optimizedLoopsOp;
|
||||
}
|
||||
|
||||
// Function that emits the loops and their optimized version.
|
||||
// The function returns a reference to the inner optimization block.
|
||||
static Block* defineLoops(ConversionPatternRewriter &rewriter,
|
||||
Location loc, std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops, int64_t numLoops) {
|
||||
KrnlOptimizeLoopsOp optimizedLoopsOp = emitOptimizedLoops(
|
||||
rewriter, loc, loops, optimizedLoops, numLoops);
|
||||
return &optimizedLoopsOp.region().front();
|
||||
}
|
||||
|
||||
// Function which emits a basic set of loops and optimized loops
|
||||
// for a given operation argument. A reference to the loop optimization
|
||||
// block is returned in the last argument of the function.
|
||||
static void emitKrnlLoopsAndIterationForOperand(
|
||||
ConversionPatternRewriter &rewriter, Location loc,
|
||||
Value operand, std::vector<Value> &originalLoops,
|
||||
KrnlOptimizeLoopsOp &optimizedLoopsOp, KrnlIterateOp &iterateOp) {
|
||||
// Operand shape.
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
|
||||
// Number of loops.
|
||||
int64_t rank = shape.size();
|
||||
|
||||
// Define loops and optimized loops.
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoopsOp = emitOptimizedLoops(rewriter, loc, originalLoops,
|
||||
optimizedLoops, rank);
|
||||
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest.
|
||||
for (int i = 0; i < rank; ++i)
|
||||
addDimensionToPack(rewriter, loc, pack, operand, i);
|
||||
|
||||
iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
}
|
||||
|
||||
unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
||||
auto elementType = memRefType.getElementType();
|
||||
|
||||
|
@ -749,55 +821,21 @@ struct ONNXElementwiseUnaryOpLowering : public ConversionPattern {
|
|||
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc,
|
||||
{operands[0]});
|
||||
|
||||
// Number of loops
|
||||
auto memRefShape = memRefType.getShape();
|
||||
int64_t rank = memRefShape.size();
|
||||
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, rank);
|
||||
std::vector<Value> originalLoops;
|
||||
originalLoops.reserve(rank);
|
||||
for (auto result : loopsOp.getResults()) {
|
||||
originalLoops.push_back(result);
|
||||
}
|
||||
|
||||
// Define loop optimization.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, rank);
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoops.reserve(rank);
|
||||
for (auto result : optimizedLoopsOp.getResults()) {
|
||||
optimizedLoops.push_back(result);
|
||||
}
|
||||
KrnlOptimizeLoopsOp optimizedLoopsOp;
|
||||
KrnlIterateOp iterateOp;
|
||||
emitKrnlLoopsAndIterationForOperand(
|
||||
rewriter, loc, operands[0], originalLoops,
|
||||
optimizedLoopsOp, iterateOp);
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest.
|
||||
// TODO (Tian): move this logic inside KrnlIterateOp. Pass MemRefShape
|
||||
// to KrnlIterateOp instead.
|
||||
for (int i = 0; i < rank; ++i) {
|
||||
if (memRefShape[i] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operands[0], i).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(memRefShape[i]);
|
||||
}
|
||||
}
|
||||
|
||||
auto iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
Block &iterationBlock = iterateOp.bodyRegion().front();
|
||||
|
||||
// Now perform the insertions into the body of the
|
||||
// just generated instructions:
|
||||
|
||||
// 1. Insert any optimizations in the KrnlOptimizeLoopsOp body.
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
// Return from KrnlOptimizeLoopsOp body.
|
||||
// When no optimizations are present we just return the loops
|
||||
// unchaged.
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
|
||||
// 2. Insert instructions inside the KernelIterateOp body.
|
||||
rewriter.setInsertionPointToStart(&iterationBlock);
|
||||
|
@ -851,59 +889,25 @@ struct ONNXElementwiseVariadicOpLowering : public ConversionPattern {
|
|||
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc,
|
||||
operands);
|
||||
|
||||
// Number of loops
|
||||
auto memRefShape = memRefType.getShape();
|
||||
int64_t rank = memRefShape.size();
|
||||
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, rank);
|
||||
std::vector<Value> originalLoops;
|
||||
originalLoops.reserve(rank);
|
||||
for (auto result : loopsOp.getResults()) {
|
||||
originalLoops.push_back(result);
|
||||
}
|
||||
|
||||
// Define loop optimization.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, rank);
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoops.reserve(rank);
|
||||
for (auto result : optimizedLoopsOp.getResults()) {
|
||||
optimizedLoops.push_back(result);
|
||||
}
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest.
|
||||
// TODO (Tian): move this logic inside KrnlIterateOp. Pass MemRefShape
|
||||
// to KrnlIterateOp instead.
|
||||
for (int i = 0; i < rank; ++i) {
|
||||
if (memRefShape[i] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, alloc, i).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(memRefShape[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Get run-time dimension information for unknown dimensions used for
|
||||
// broadcasting.
|
||||
std::map<int, std::map<int, Value>> broadcastedDimInfo =
|
||||
getBroadcastedDimInfo(loc, rewriter, memRefType, operands);
|
||||
|
||||
auto iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
std::vector<Value> originalLoops;
|
||||
KrnlOptimizeLoopsOp optimizedLoopsOp;
|
||||
KrnlIterateOp iterateOp;
|
||||
emitKrnlLoopsAndIterationForOperand(
|
||||
rewriter, loc, alloc, originalLoops,
|
||||
optimizedLoopsOp, iterateOp);
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
Block &iterationBlock = iterateOp.bodyRegion().front();
|
||||
|
||||
// Now perform the insertions into the body of the
|
||||
// just generated instructions:
|
||||
|
||||
// 1. Insert any optimizations in the KrnlOptimizeLoopsOp body.
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
// Return from KrnlOptimizeLoopsOp body.
|
||||
// When no optimizations are present we just return the loops unchaged.
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
|
||||
// 2. Insert instructions inside the KernelIterateOp body.
|
||||
rewriter.setInsertionPointToStart(&iterationBlock);
|
||||
|
@ -978,21 +982,10 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
|||
FloatAttr::get(elementType, -std::numeric_limits<float>::infinity()));
|
||||
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, rank);
|
||||
std::vector<Value> originalLoops;
|
||||
originalLoops.reserve(rank);
|
||||
for (auto result : loopsOp.getResults()) {
|
||||
originalLoops.push_back(result);
|
||||
}
|
||||
|
||||
// Define loop optimization.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, rank);
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoops.reserve(rank);
|
||||
for (auto result : optimizedLoopsOp.getResults()) {
|
||||
optimizedLoops.push_back(result);
|
||||
}
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
Block *optimizationBlock = defineLoops(rewriter, loc, originalLoops,
|
||||
optimizedLoops, rank);
|
||||
|
||||
// Coerce the input into a 2-D tensor. `axis` will be the coercing point.
|
||||
// This coercing follows the softmax definition in ONNX:
|
||||
|
@ -1009,16 +1002,9 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
|||
optimizedOuterLoops.push_back(optimizedLoops[i]);
|
||||
}
|
||||
KrnlIterateOperandPack outerPack(rewriter, outerLoops, optimizedOuterLoops);
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
if (memRefShape[i] < 0) {
|
||||
outerPack.pushConstantBound(0);
|
||||
outerPack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operands[0], i).getResult());
|
||||
} else {
|
||||
outerPack.pushConstantBound(0);
|
||||
outerPack.pushConstantBound(memRefShape[i]);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < axis; ++i)
|
||||
addDimensionToPack(rewriter, loc, outerPack, operands[0], i);
|
||||
|
||||
// Define an inner loop with respect to axis.
|
||||
std::vector<Value> innerLoops, optimizedInnerLoops;
|
||||
innerLoops.reserve(rank - axis);
|
||||
|
@ -1028,16 +1014,8 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
|||
optimizedInnerLoops.push_back(optimizedLoops[i]);
|
||||
}
|
||||
KrnlIterateOperandPack innerPack(rewriter, innerLoops, optimizedInnerLoops);
|
||||
for (int i = axis; i < rank; ++i) {
|
||||
if (memRefShape[i] < 0) {
|
||||
innerPack.pushConstantBound(0);
|
||||
innerPack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operands[0], i).getResult());
|
||||
} else {
|
||||
innerPack.pushConstantBound(0);
|
||||
innerPack.pushConstantBound(memRefShape[i]);
|
||||
}
|
||||
}
|
||||
for (int i = axis; i < rank; ++i)
|
||||
addDimensionToPack(rewriter, loc, innerPack, operands[0], i);
|
||||
|
||||
KrnlIterateOp outerIterateOp, maxIterateOp, sumIterateOp, softmaxIterateOp;
|
||||
SmallVector<Value, 4> outerLoopIVs;
|
||||
|
@ -1045,9 +1023,8 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
|||
outerIterateOp = rewriter.create<KrnlIterateOp>(loc, outerPack);
|
||||
|
||||
// No optimization
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
rewriter.setInsertionPointToEnd(optimizationBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
|
||||
// Insert instructions inside the outer loop.
|
||||
Block &outerIterationBlock = outerIterateOp.bodyRegion().front();
|
||||
|
@ -1078,9 +1055,8 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
|||
softmaxIterateOp = rewriter.create<KrnlIterateOp>(loc, innerPack);
|
||||
|
||||
// No optimization
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
rewriter.setInsertionPointToEnd(optimizationBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
}
|
||||
|
||||
// Insert instructions inside the max loop.
|
||||
|
@ -1291,20 +1267,10 @@ struct ONNXGemmOpLowering : public ConversionPattern {
|
|||
int64_t numLoops = 3;
|
||||
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, numLoops);
|
||||
std::vector<Value> originalLoops;
|
||||
originalLoops.reserve(numLoops);
|
||||
for (auto result : loopsOp.getResults()) {
|
||||
originalLoops.push_back(result);
|
||||
}
|
||||
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, numLoops);
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoops.reserve(numLoops);
|
||||
for (auto result : optimizedLoopsOp.getResults()) {
|
||||
optimizedLoops.push_back(result);
|
||||
}
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
Block *optimizationBlock = defineLoops(rewriter, loc, originalLoops,
|
||||
optimizedLoops, numLoops);
|
||||
|
||||
// We have two Krnl loops:
|
||||
// - Outer loop iterates over the output matrix dimensions, and
|
||||
|
@ -1321,16 +1287,9 @@ struct ONNXGemmOpLowering : public ConversionPattern {
|
|||
KrnlIterateOperandPack outerPack(rewriter, outerLoops,
|
||||
optimizedOuterLoops);
|
||||
// Induction variables for the outer loops
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
if (memRefShape[i] < 0) {
|
||||
outerPack.pushConstantBound(0);
|
||||
outerPack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, alloc, i).getResult());
|
||||
} else {
|
||||
outerPack.pushConstantBound(0);
|
||||
outerPack.pushConstantBound(memRefShape[i]);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < 2; ++i)
|
||||
addDimensionToPack(rewriter, loc, outerPack, alloc, i);
|
||||
|
||||
// Reduction loop
|
||||
std::vector<Value> reductionLoops, optimizedReductionLoops;
|
||||
reductionLoops.reserve(1);
|
||||
|
@ -1378,9 +1337,8 @@ struct ONNXGemmOpLowering : public ConversionPattern {
|
|||
// just generated instructions:
|
||||
|
||||
// No optimization
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
rewriter.setInsertionPointToEnd(optimizationBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
|
||||
// Insert instructions inside the outer loop.
|
||||
Block &outerIterationBlock = outerIterateOp.bodyRegion().front();
|
||||
|
@ -1544,36 +1502,15 @@ struct ONNXTransposeOpLowering : public ConversionPattern {
|
|||
int64_t rank = memRefShape.size();
|
||||
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, rank);
|
||||
std::vector<Value> originalLoops;
|
||||
originalLoops.reserve(rank);
|
||||
|
||||
for (auto result : loopsOp.getResults()) {
|
||||
originalLoops.push_back(result);
|
||||
}
|
||||
|
||||
// Define loop optimization.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, rank);
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoops.reserve(rank);
|
||||
Block *optimizationBlock = defineLoops(rewriter, loc, originalLoops,
|
||||
optimizedLoops, rank);
|
||||
|
||||
for (auto result : optimizedLoopsOp.getResults()) {
|
||||
optimizedLoops.push_back(result);
|
||||
}
|
||||
Block &optimizationBlock = optimizedLoopsOp.region().front();
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest using the input shape.
|
||||
auto inputShape = operands[0].getType().cast<MemRefType>().getShape();
|
||||
for (int i = 0; i < rank; ++i) {
|
||||
if (inputShape[i] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operands[0], i).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(inputShape[i]);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < rank; ++i)
|
||||
addDimensionToPack(rewriter, loc, pack, operands[0], i);
|
||||
|
||||
auto iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
Block &iterationBlock = iterateOp.bodyRegion().front();
|
||||
|
@ -1582,12 +1519,11 @@ struct ONNXTransposeOpLowering : public ConversionPattern {
|
|||
// just generated instructions:
|
||||
|
||||
// 1. Insert any optimizations in the KrnlOptimizeLoopsOp body.
|
||||
rewriter.setInsertionPointToEnd(&optimizationBlock);
|
||||
rewriter.setInsertionPointToEnd(optimizationBlock);
|
||||
// Return from KrnlOptimizeLoopsOp body.
|
||||
// When no optimizations are present we just return the loops
|
||||
// unchaged.
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, originalLoops);
|
||||
rewriter.setInsertionPoint(optimizedLoopsOp);
|
||||
|
||||
// 2. Insert instructions inside the KernelIterateOp body.
|
||||
rewriter.setInsertionPointToStart(&iterationBlock);
|
||||
|
@ -1638,6 +1574,255 @@ struct ONNXIdentityOpLowering : public ConversionPattern {
|
|||
}
|
||||
};
|
||||
|
||||
struct ONNXConvNoBiasOpLowering : public ConversionPattern {
|
||||
ONNXConvNoBiasOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXConvNoBiasOp::getOperationName(), 1, ctx) {}
|
||||
|
||||
PatternMatchResult
|
||||
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const final {
|
||||
auto tensorType = (*op->result_type_begin()).cast<TensorType>();
|
||||
auto loc = op->getLoc();
|
||||
// Insert an allocation and deallocation for the result of this operation.
|
||||
auto memRefType = convertTensorToMemRef(tensorType);
|
||||
Value alloc;
|
||||
bool insertDealloc = checkInsertDealloc(op);
|
||||
ONNXConvNoBiasOp convOp = llvm::dyn_cast<ONNXConvNoBiasOp>(op);
|
||||
|
||||
if (hasAllConstantDimensions(memRefType))
|
||||
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc);
|
||||
else
|
||||
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc,
|
||||
{operands[0]});
|
||||
|
||||
auto resultShape = memRefType.getShape();
|
||||
auto inputShape = operands[0].getType().cast<MemRefType>().getShape();
|
||||
auto kernelShape = operands[1].getType().cast<MemRefType>().getShape();
|
||||
|
||||
// R = ConvNoBias(D, K)
|
||||
//
|
||||
// The input/output shapes will look like this:
|
||||
//
|
||||
// D (NxCxHxW) x K (MxC/groupxKHxKW) -> R (NxMxRHxRW)
|
||||
//
|
||||
// M is a multiple of the number of groups:
|
||||
// M = group * kernelsPerGroup
|
||||
//
|
||||
// The loop nest will look as follows:
|
||||
//
|
||||
// kernelsPerGroup = M / group;
|
||||
// for n = 0 .. N:
|
||||
// for g = 0 .. group:
|
||||
// for m = 0 .. kernelsPerGroup:
|
||||
// kernel = g * kernelsPerGroup + m;
|
||||
// for r1 = 0 .. RH:
|
||||
// for r2 = 0 .. RW:
|
||||
// R[n][kernel][r1][r2] = 0;
|
||||
// for c = 0 .. C/group:
|
||||
// for k1 = 0 .. KH:
|
||||
// for k2 = 0 .. KW:
|
||||
// R[n][kernel][r1][r2] =
|
||||
// D[n][g * (C / group) + c][r1 + k1][r2 + k2] *
|
||||
// K[kernel][c][k1][k2];
|
||||
//
|
||||
// TODO: handle padding.
|
||||
//
|
||||
// In the general case:
|
||||
//
|
||||
// D (NxCxD1xD2x...xDdim) x K (MxC/groupxK1xK2x...xKdim)
|
||||
// -> R (NxMxR1xR2x...xRdim)
|
||||
//
|
||||
// The above loop nest can be adapted by increasing the number
|
||||
// of r- and k-index loop i.e. r1 r2 and k1 k2 loops.
|
||||
|
||||
// Set up outermost loops: n g m r1 r2 ... rdim
|
||||
// Skip g if group is 1.
|
||||
|
||||
// Before we start the iteration we need to compute the number of
|
||||
// unsplit kernels and fetch the number of groups from the attribute
|
||||
// list. Group is always a compilation constant.
|
||||
int64_t group = convOp.group().getSExtValue();
|
||||
// Compute the number of unsplit kernels. The number of kernels
|
||||
// must be a multiple of the number of groups.
|
||||
int64_t kernelsPerGroup = floor(kernelShape[0] / group);
|
||||
auto kernelsPerGroupValue =
|
||||
rewriter.create<ConstantIndexOp>(loc, kernelsPerGroup);
|
||||
auto zero = rewriter.create<ConstantOp>(
|
||||
loc, FloatAttr::get(memRefType.getElementType(), 0));
|
||||
Value subchannels;
|
||||
if (kernelShape[1] < 0) {
|
||||
subchannels =
|
||||
rewriter.create<DimOp>(loc, operands[1], 1).getResult();
|
||||
} else {
|
||||
subchannels = rewriter.create<ConstantIndexOp>(
|
||||
loc, kernelShape[1]);
|
||||
}
|
||||
|
||||
// 1. Define outer loops and emit empty optimization block:
|
||||
int64_t nOuterLoops = (group > 1) ? 3 : 2;
|
||||
std::vector<Value> outerLoops;
|
||||
std::vector<Value> optimizedOuterLoops;
|
||||
Block *optimizationBlock = defineLoops(rewriter, loc, outerLoops,
|
||||
optimizedOuterLoops, nOuterLoops);
|
||||
|
||||
// Prepare iteration arguments over outer loop nest.
|
||||
KrnlIterateOperandPack pack(
|
||||
rewriter, outerLoops, optimizedOuterLoops);
|
||||
// for n = 0 .. N:
|
||||
pack.pushConstantBound(0);
|
||||
if (inputShape[0] < 0)
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operands[0], 0).getResult());
|
||||
else
|
||||
pack.pushConstantBound(inputShape[0]);
|
||||
// for g = 0 .. N:
|
||||
if (group > 1) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(group);
|
||||
}
|
||||
// for m = 0 .. kernelsPerGroup:
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(kernelsPerGroup);
|
||||
// Outer loop iteration.
|
||||
auto iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
Block &outerIterationBlock = iterateOp.bodyRegion().front();
|
||||
// Emit optimizations for outer loops:
|
||||
rewriter.setInsertionPointToEnd(optimizationBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, outerLoops);
|
||||
rewriter.setInsertionPointToStart(&outerIterationBlock);
|
||||
{
|
||||
// 2. Emit the body of the outer loop nest.
|
||||
|
||||
// 2.1 Compute kernel order number: kernel = g * kernelsPerGroup + m;
|
||||
// If group is not set then the value of the kernel ID is
|
||||
// identical to that of the loop over kernels.
|
||||
Value kernel = outerIterationBlock.getArguments()[1];
|
||||
if (group > 1) {
|
||||
// Middle loop is over groups and third loop is over the
|
||||
// kernel identifiers in the current group.
|
||||
auto kernelsOffset = rewriter.create<MulIOp>(loc,
|
||||
outerIterationBlock.getArguments()[1],
|
||||
kernelsPerGroupValue);
|
||||
kernel = rewriter.create<AddIOp>(loc, kernelsOffset,
|
||||
outerIterationBlock.getArguments()[2]);
|
||||
}
|
||||
|
||||
// 2.2 Define spatial loops
|
||||
int64_t nSpatialLoops = resultShape.size() - 2;
|
||||
std::vector<Value> spatialLoops;
|
||||
std::vector<Value> optimizedSpatialLoops;
|
||||
Block *optSpatialLoopBlock = defineLoops(rewriter, loc, spatialLoops,
|
||||
optimizedSpatialLoops, nSpatialLoops);
|
||||
|
||||
// 2.3 Prepare iteration arguments for spatial loop nest.
|
||||
KrnlIterateOperandPack spatialPack(
|
||||
rewriter, spatialLoops, optimizedSpatialLoops);
|
||||
for (int i = 2; i < resultShape.size(); ++i)
|
||||
addDimensionToPack(rewriter, loc, spatialPack, alloc, i);
|
||||
|
||||
// 2.4 Emit loop nest over output spatial dimensions.
|
||||
// for rX = 0 .. RX
|
||||
auto spatialIterateOp =
|
||||
rewriter.create<KrnlIterateOp>(loc, spatialPack);
|
||||
Block &spatialIterationBlock = spatialIterateOp.bodyRegion().front();
|
||||
// 2.5 Emit optimizations for outer loops:
|
||||
rewriter.setInsertionPointToEnd(optSpatialLoopBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, spatialLoops);
|
||||
rewriter.setInsertionPointToStart(&spatialIterationBlock);
|
||||
{
|
||||
// 3. Emit the body of the spatial loop nest.
|
||||
// 3.1 Emit: R[n][kernel][r1][r2] = 0;
|
||||
SmallVector<Value, 4> resultIndices;
|
||||
// n
|
||||
resultIndices.emplace_back(outerIterationBlock.getArguments()[0]);
|
||||
// kernel
|
||||
resultIndices.emplace_back(kernel);
|
||||
// rX
|
||||
for (auto arg : spatialIterationBlock.getArguments())
|
||||
resultIndices.emplace_back(arg);
|
||||
// Store initializer value into output location.
|
||||
rewriter.create<StoreOp>(loc, zero, alloc, resultIndices);
|
||||
|
||||
// 3.2 Define inner loops.
|
||||
int64_t nInnerLoops = 1 + (kernelShape.size() - 2);
|
||||
std::vector<Value> innerLoops;
|
||||
std::vector<Value> optimizedInnerLoops;
|
||||
Block *optInnerLoopBlock = defineLoops(rewriter, loc, innerLoops,
|
||||
optimizedInnerLoops, nInnerLoops);
|
||||
|
||||
// 3.3 Prepare iteration arguments for inner loop nest.
|
||||
KrnlIterateOperandPack innerPack(
|
||||
rewriter, innerLoops, optimizedInnerLoops);
|
||||
// for c = 0 .. C/group
|
||||
innerPack.pushConstantBound(0);
|
||||
innerPack.pushConstantBound(kernelShape[1]);
|
||||
// for Kx = 0 .. KX
|
||||
for (int i = 2; i < kernelShape.size(); ++i)
|
||||
addDimensionToPack(rewriter, loc, innerPack, operands[1], i);
|
||||
|
||||
// 3.4 Emit inner loop nest.
|
||||
auto innerIterateOp =
|
||||
rewriter.create<KrnlIterateOp>(loc, innerPack);
|
||||
Block &innerIterationBlock = innerIterateOp.bodyRegion().front();
|
||||
// 3.5 Emit optimizations for outer loops:
|
||||
rewriter.setInsertionPointToEnd(optInnerLoopBlock);
|
||||
rewriter.create<KrnlReturnLoopsOp>(loc, innerLoops);
|
||||
rewriter.setInsertionPointToStart(&innerIterationBlock);
|
||||
{
|
||||
// 4. Emit inner loop body
|
||||
// R[n][kernel][r1][r2] =
|
||||
// D[n][g * (C / group) + c][r1 + k1][r2 + k2] *
|
||||
// K[kernel][c][k1][k2];
|
||||
|
||||
// 4.1 Prepare indices for accesing the data tensor.
|
||||
SmallVector<Value, 4> dataIndices;
|
||||
// n
|
||||
dataIndices.emplace_back(outerIterationBlock.getArguments()[0]);
|
||||
// g * (C / group) + c
|
||||
Value channelDepth = innerIterationBlock.getArguments()[0];
|
||||
if (group > 1)
|
||||
channelDepth = rewriter.create<AddIOp>(loc, channelDepth,
|
||||
rewriter.create<MulIOp>(loc, subchannels,
|
||||
outerIterationBlock.getArguments()[1]));
|
||||
dataIndices.emplace_back(channelDepth);
|
||||
// rX + kX
|
||||
for (int i = 0; i < kernelShape.size() - 2; ++i)
|
||||
dataIndices.emplace_back(
|
||||
rewriter.create<AddIOp>(loc,
|
||||
spatialIterationBlock.getArguments()[i],
|
||||
innerIterationBlock.getArguments()[i+1]));
|
||||
|
||||
// 4.2 Prepare indices for accessing the kernel tensor.
|
||||
SmallVector<Value, 4> kernelIndices;
|
||||
// kernel
|
||||
kernelIndices.emplace_back(kernel);
|
||||
// c
|
||||
kernelIndices.emplace_back(innerIterationBlock.getArguments()[0]);
|
||||
// kX
|
||||
for (int i = 0; i < kernelShape.size() - 2; ++i)
|
||||
kernelIndices.emplace_back(
|
||||
innerIterationBlock.getArguments()[i+1]);
|
||||
|
||||
// 4.3 Compute convolution.
|
||||
auto loadData =
|
||||
rewriter.create<LoadOp>(loc, operands[0], dataIndices);
|
||||
auto loadKernel =
|
||||
rewriter.create<LoadOp>(loc, operands[1], kernelIndices);
|
||||
auto loadPartialSum =
|
||||
rewriter.create<LoadOp>(loc, alloc, resultIndices);
|
||||
Value result = rewriter.create<AddFOp>(loc, loadPartialSum,
|
||||
rewriter.create<MulFOp>(loc, loadData, loadKernel));
|
||||
// 4.4 Store computed value into output location.
|
||||
rewriter.create<StoreOp>(loc, result, alloc, resultIndices);
|
||||
}
|
||||
}
|
||||
}
|
||||
rewriter.replaceOp(op, alloc);
|
||||
|
||||
return matchSuccess();
|
||||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// EntryPoint Op lowering to Krnl Entry Point.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -1769,7 +1954,8 @@ void FrontendToKrnlLoweringPass::runOnModule() {
|
|||
ONNXReshapeOpLowering, ONNXEntryPointLowering,
|
||||
ONNXSoftmaxOpLowering, ONNXGemmOpLowering,
|
||||
ONNXUnsqueezeOpLowering, ONNXTransposeOpLowering,
|
||||
ONNXIdentityOpLowering>(&getContext());
|
||||
ONNXIdentityOpLowering, ONNXConvNoBiasOpLowering
|
||||
>(&getContext());
|
||||
|
||||
// With the target and rewrite patterns defined, we can now attempt the
|
||||
// conversion. The conversion will signal failure if any of our `illegal`
|
||||
|
|
|
@ -202,6 +202,9 @@ test_to_enable = [
|
|||
"test_transpose_all_permutations_4_cpu",
|
||||
"test_transpose_all_permutations_5_cpu",
|
||||
|
||||
# Conv
|
||||
"test_basic_conv_without_padding_cpu",
|
||||
|
||||
# Sign Op:
|
||||
"test_sign_cpu",
|
||||
]
|
||||
|
|
|
@ -568,15 +568,15 @@ func @test_add_with_broadcasting(%arg0 : tensor<?xf32>, %arg1 : tensor<?x10xf32>
|
|||
// CHECK-LABEL: test_add_with_broadcasting
|
||||
// CHECK: [[DIM1:%.+]] = dim %arg1, 0 : memref<?x10xf32>
|
||||
// CHECK: [[RES:%.+]] = alloc([[DIM1]]) : memref<?x10xf32>
|
||||
// CHECK: [[DIM2:%.+]] = dim %arg0, 0 : memref<?xf32>
|
||||
// CHECK: [[ONE:%.+]] = constant 1 : index
|
||||
// CHECK: [[IS_ONE:%.+]] = cmpi "eq", [[DIM2]], [[ONE]] : index
|
||||
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
|
||||
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
||||
// CHECK: [[DIM2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
|
||||
// CHECK: [[DIM3:%.+]] = dim %arg0, 0 : memref<?xf32>
|
||||
// CHECK: [[ONE:%.+]] = constant 1 : index
|
||||
// CHECK: [[IS_ONE:%.+]] = cmpi "eq", [[DIM3]], [[ONE]] : index
|
||||
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
||||
// CHECK: [[DIM3:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
|
||||
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM3]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
|
||||
// CHECK: [[ZERO:%.+]] = constant 0 : index
|
||||
// CHECK: %[[SELECT1:.+]] = select [[IS_ONE]], [[ZERO]], %arg3 : index
|
||||
// CHECK: [[LOAD1:%.+]] = load %arg0[%[[SELECT1]]] : memref<?xf32>
|
||||
|
@ -788,3 +788,93 @@ func @test_sign_i(%arg0 : tensor<?x10xi32>) -> tensor<*xi32> {
|
|||
// CHECK: store [[SIGN_RES]], [[RES]][%arg1, %arg2] : memref<?x10xi32>
|
||||
// CHECK: return [[RES]] : memref<?x10xi32>
|
||||
}
|
||||
|
||||
func @test_conv_no_bias_no_pad(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-LABEL: test_conv_no_bias_no_pad
|
||||
// CHECK: [[RES:%.+]] = alloc() : memref<1x5x27x58xf32>
|
||||
// CHECK: [[CONST0:%.+]] = constant 5 : index
|
||||
// CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32
|
||||
// CHECK: [[CONST2:%.+]] = constant 2 : index
|
||||
// CHECK: [[OUTER_LOOPS:%.+]]:2 = krnl.define_loops 2
|
||||
// CHECK: [[OPT_OUTER_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1) with ([[OUTER_LOOPS]]#0 -> %arg2 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg3 = 0 to 5) {
|
||||
// CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2
|
||||
// CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg4 = 0 to 27, [[SPATIAL_LOOPS]]#1 -> %arg5 = 0 to 58) {
|
||||
// CHECK: store [[CONST1]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32>
|
||||
// CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3
|
||||
// CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg6 = 0 to 2, [[INNER_LOOPS]]#1 -> %arg7 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg8 = 0 to 7) {
|
||||
// CHECK: [[R1PLUSK1:%.+]] = addi %arg4, %arg7 : index
|
||||
// CHECK: [[R2PLUSK2:%.+]] = addi %arg5, %arg8 : index
|
||||
// CHECK: [[DATA:%.+]] = load %arg0[%arg2, %arg6, [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x2x32x64xf32>
|
||||
// CHECK: [[KERNEL:%.+]] = load %arg1[%arg3, %arg6, %arg7, %arg8] : memref<5x2x6x7xf32>
|
||||
// CHECK: [[ACC_RES:%.+]] = load %0[%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32>
|
||||
// CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32
|
||||
// CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32
|
||||
// CHECK: store [[ADD]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32>
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
|
||||
// CHECK: return [[RES]] : memref<1x5x27x58xf32>
|
||||
}
|
||||
|
||||
func @test_conv_no_bias_no_pad_w_group(%arg0 : tensor<1x9x32x64xf32>, %arg1 : tensor<5x3x6x7xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "NOTSET", group = 3 : i64} : (tensor<1x9x32x64xf32>, tensor<5x3x6x7xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-LABEL: test_conv_no_bias_no_pad_w_group
|
||||
// CHECK: [[RES:%.+]] = alloc() : memref<1x5x27x58xf32>
|
||||
// CHECK: [[CONST0:%.+]] = constant 1 : index
|
||||
// CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32
|
||||
// CHECK: [[CONST2:%.+]] = constant 3 : index
|
||||
// CHECK: [[OUTER_LOOPS:%.+]]:3 = krnl.define_loops 3
|
||||
// CHECK: [[OPT_OUTER_LOOPS:%.+]]:3 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1, [[OUTER_LOOPS]]#2
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1, [[OPT_OUTER_LOOPS]]#2) with ([[OUTER_LOOPS]]#0 -> %arg2 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg3 = 0 to 3, [[OUTER_LOOPS]]#2 -> %arg4 = 0 to 1) {
|
||||
// CHECK: [[MUL1:%.+]] = muli %arg3, [[CONST0]] : index
|
||||
// CHECK: %[[ADD1:.+]] = addi [[MUL1]], %arg4 : index
|
||||
// CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2
|
||||
// CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg5 = 0 to 27, [[SPATIAL_LOOPS]]#1 -> %arg6 = 0 to 58) {
|
||||
// CHECK: store [[CONST1]], [[RES]][%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32>
|
||||
// CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3
|
||||
// CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops {
|
||||
// CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2
|
||||
// CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop)
|
||||
|
||||
// CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg7 = 0 to 3, [[INNER_LOOPS]]#1 -> %arg8 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg9 = 0 to 7) {
|
||||
// CHECK: [[MUL2:%.+]] = muli [[CONST2]], %arg3 : index
|
||||
// CHECK: [[ADD2:%.+]] = addi %arg7, [[MUL2]] : index
|
||||
// CHECK: [[R1PLUSK1:%.+]] = addi %arg5, %arg8 : index
|
||||
// CHECK: [[R2PLUSK2:%.+]] = addi %arg6, %arg9 : index
|
||||
// CHECK: [[DATA:%.+]] = load %arg0[%arg2, [[ADD2]], [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x9x32x64xf32>
|
||||
// CHECK: [[KERNEL:%.+]] = load %arg1[%[[ADD1]], %arg7, %arg8, %arg9] : memref<5x3x6x7xf32>
|
||||
// CHECK: [[ACC_RES:%.+]] = load %0[%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32>
|
||||
// CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32
|
||||
// CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32
|
||||
// CHECK: store [[ADD]], [[RES]][%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32>
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
|
||||
// CHECK: return [[RES]] : memref<1x5x27x58xf32>
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue