Merge pull request #84 from chentong319/shapeinference-pad

Shape inference for pad with constant pads
This commit is contained in:
chentong319 2020-02-25 19:32:34 -05:00 committed by GitHub
commit 04d9e2f341
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 118 additions and 6 deletions

View File

@ -2848,6 +2848,32 @@ ONNX PRelu operation
1. `Y`: memref of any type values or tensor of any type values 1. `Y`: memref of any type values or tensor of any type values
### onnx.PadConstantPad (ONNXPadConstantPadOp)
ONNX Pad operation with constant padding value
#### Description:
"this operation is introduced to handle situation"
" in which the padding value and padding are constants"
"They will become attributes."
#### Operands:
1. `data`: memref of any type values or tensor of any type values
1. `constant_value`: memref of any type values or tensor of any type values
#### Attributes:
| Attribute | MLIR Type | Description |
| :-------: | :-------: | ----------- |
| `pads` | `ArrayAttr` | 64-bit integer array attribute attribute |
| `mode` | `StringAttr` | string attribute attribute |
#### Results:
1. `output`: memref of any type values or tensor of any type values
### onnx.PadConstantValue (ONNXPadConstantValueOp) ### onnx.PadConstantValue (ONNXPadConstantValueOp)
ONNX Pad operation with constant padding value ONNX Pad operation with constant padding value
@ -2876,7 +2902,7 @@ ONNX Pad operation with constant padding value
1. `output`: memref of any type values or tensor of any type values 1. `output`: memref of any type values or tensor of any type values
### onnx.PadConstatValuePad (ONNXPadConstantValuePadOp) ### onnx.PadConstantValuePad (ONNXPadConstantValuePadOp)
ONNX Pad operation with constant padding value ONNX Pad operation with constant padding value
#### Description: #### Description:

View File

@ -169,8 +169,22 @@ def ONNXPadConstantValueOp : ONNX_Op<"PadConstantValue",
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output); let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
} }
def ONNXPadConstantValuePadOp : ONNX_Op<"PadConstatValuePad", def ONNXPadConstantPadOp : ONNX_Op<"PadConstantPad",
[NoSideEffect ]> { [NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface> ]> {
let summary = "ONNX Pad operation with constant padding value";
let description = [{ "this operation is introduced to handle situation"
" in which the padding value and padding are constants"
"They will become attributes."
}];
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$data,
AnyTypeOf<[AnyMemRef, AnyTensor]>:$constant_value,
I64ArrayAttr:$pads,
DefaultValuedAttr<StrAttr, "constant">:$mode);
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
}
def ONNXPadConstantValuePadOp : ONNX_Op<"PadConstantValuePad",
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface> ]> {
let summary = "ONNX Pad operation with constant padding value"; let summary = "ONNX Pad operation with constant padding value";
let description = [{ "this operation is introduced to handle situation" let description = [{ "this operation is introduced to handle situation"
" in which the padding value and padding are constants" " in which the padding value and padding are constants"

View File

@ -1045,6 +1045,57 @@ void ONNXMaxPoolSingleOutOp::inferShapes() {
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
static Type padShapeInferenceHelper(Value data, ArrayAttr padsOpt) {
// Cannot infer shape if no shape exists.
if (!data.getType().isa<RankedTensorType>())
return (Type)NULL;
auto dataTy = data.getType().cast<RankedTensorType>();
auto dataShape = dataTy.getShape();
auto dataRank = dataShape.size();
SmallVector<int64_t, 4> outputShape(dataShape.begin(), dataShape.end());
if (padsOpt) {
auto padsArray = padsOpt.getValue();
// Pads consists of two values for each axis of data.
// The two values specify the number of elements padded before and after respectively.
for (int i = 0; i < dataRank; ++i) {
int64_t p1 = (padsArray[2*i]).cast<IntegerAttr>().getInt();
int64_t p2 = (padsArray[2*i+1]).cast<IntegerAttr>().getInt();
//Have to non-negative constant
if (p1 < 0 || p2 <0)
return (Type)NULL;
outputShape[i] += p1+p2;
}
return (RankedTensorType::get(outputShape, dataTy.getElementType()));
} else {
return (Type)NULL;
}
}
// PadConstantPad
void ONNXPadConstantPadOp::inferShapes(){
auto outputType = padShapeInferenceHelper(data(), pads());
if (outputType) {
getResult().setType(outputType);
}
return;
}
//===----------------------------------------------------------------------===//
// PadConstantValuePad
void ONNXPadConstantValuePadOp::inferShapes(){
auto outputType = padShapeInferenceHelper(data(), pads());
if (outputType) {
getResult().setType(outputType);
}
return;
}
//===----------------------------------------------------------------------===//
// Unsqueeze // Unsqueeze
void ONNXUnsqueezeOp::inferShapes() { void ONNXUnsqueezeOp::inferShapes() {

View File

@ -127,6 +127,8 @@ public:
op->getName().getStringRef() != "onnx.Softmax" && op->getName().getStringRef() != "onnx.Softmax" &&
op->getName().getStringRef() != "onnx.Sqrt" && op->getName().getStringRef() != "onnx.Sqrt" &&
op->getName().getStringRef() != "onnx.ConvNoBias" && op->getName().getStringRef() != "onnx.ConvNoBias" &&
op->getName().getStringRef() != "onnx.PadConstantPad" &&
op->getName().getStringRef() != "onnx.PadConstantValuePad" &&
op->getName().getStringRef() != "onnx.BatchNormalizationTestMode" && op->getName().getStringRef() != "onnx.BatchNormalizationTestMode" &&
op->getName().getStringRef() != "onnx.Unsqueeze") op->getName().getStringRef() != "onnx.Unsqueeze")
return false; return false;

View File

@ -87,7 +87,7 @@ func @test_reducesumsquare(%arg0 : tensor<?x?x?xf32>) -> tensor<*xf32> {
// CHECK-LABEL: @test_constant_pad(%{{.*}}: tensor<?x?xf32>) -> tensor<*xf32> { // CHECK-LABEL: @test_constant_pad(%{{.*}}: tensor<?x?xf32>) -> tensor<*xf32> {
func @test_constant_pad(%arg0 : tensor<?x?xf32>) -> tensor<*xf32> { func @test_constant_pad(%arg0 : tensor<?x?xf32>) -> tensor<*xf32> {
// CHECK-NEXT: [[SQUARE:%.+]] = "onnx.PadConstatValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<?x?xf32>) -> tensor<*xf32> // CHECK-NEXT: [[SQUARE:%.+]] = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<?x?xf32>) -> tensor<*xf32>
%0 ="onnx.Constant"() {value=[0, 2, 0, 0]} : ()-> tensor<?xi64> %0 ="onnx.Constant"() {value=[0, 2, 0, 0]} : ()-> tensor<?xi64>
%2 = "onnx.PadConstantValue"(%arg0, %0) {constant_value=0. : f32, mode = "constant"} : (tensor<?x?xf32>, tensor<?xi64>)-> tensor<*xf32> %2 = "onnx.PadConstantValue"(%arg0, %0) {constant_value=0. : f32, mode = "constant"} : (tensor<?x?xf32>, tensor<?xi64>)-> tensor<*xf32>
"std.return"(%2) : (tensor<*xf32>) -> () "std.return"(%2) : (tensor<*xf32>) -> ()
@ -97,7 +97,7 @@ func @test_constant_pad(%arg0 : tensor<?x?xf32>) -> tensor<*xf32> {
func @test_conv_split(%arg0 : tensor<1x9x32x64xf32>, %arg1 : tensor<5x9x6x7xf32>) -> tensor<*xf32> { func @test_conv_split(%arg0 : tensor<1x9x32x64xf32>, %arg1 : tensor<5x9x6x7xf32>) -> tensor<*xf32> {
%0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "NOTSET", group = 1 : i64, pads = [2, 3, 4, 5]} : (tensor<1x9x32x64xf32>, tensor<5x9x6x7xf32>) -> tensor<*xf32> %0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "NOTSET", group = 1 : i64, pads = [2, 3, 4, 5]} : (tensor<1x9x32x64xf32>, tensor<5x9x6x7xf32>) -> tensor<*xf32>
"std.return"(%0) : (tensor<*xf32>) -> () "std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-NEXT: %0 = "onnx.PadConstatValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 0, 2, 3, 0, 0, 4, 5]} : (tensor<1x9x32x64xf32>) -> tensor<1x9x38x72xf32> // CHECK-NEXT: %0 = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 0, 2, 3, 0, 0, 4, 5]} : (tensor<1x9x32x64xf32>) -> tensor<1x9x38x72xf32>
// CHECK-NEXT: %1 = "onnx.ConvNoBias"(%0, %arg1) {auto_pad = "NOTSET", group = 1 : i64, pads = [0, 0, 0, 0]} : (tensor<1x9x38x72xf32>, tensor<5x9x6x7xf32>) -> tensor<*xf32> // CHECK-NEXT: %1 = "onnx.ConvNoBias"(%0, %arg1) {auto_pad = "NOTSET", group = 1 : i64, pads = [0, 0, 0, 0]} : (tensor<1x9x38x72xf32>, tensor<5x9x6x7xf32>) -> tensor<*xf32>
// CHECK-NEXT: return %1 : tensor<*xf32> // CHECK-NEXT: return %1 : tensor<*xf32>
} }

View File

@ -269,8 +269,27 @@ func @test_conv_no_bias_10(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7
func @test_conv_no_bias_11(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { func @test_conv_no_bias_11(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> {
%0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "SAME_UPPER", group = 1 : i64, dilations = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<*xf32> %0 = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "SAME_UPPER", group = 1 : i64, dilations = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<*xf32>
"std.return"(%0) : (tensor<*xf32>) -> () "std.return"(%0) : (tensor<*xf32>) -> ()
}
// CHECK-LABEL: test_conv_no_bias_11 // CHECK-LABEL: test_conv_no_bias_11
// CHECK: [[RES_ATTR:%.+]] = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "SAME_UPPER", dilations = [2, 3], group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<1x5x32x64xf32> // CHECK: [[RES_ATTR:%.+]] = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "SAME_UPPER", dilations = [2, 3], group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<1x5x32x64xf32>
// CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32>
/// Test PadConstantValuePad_1
func @test_PadConstantValuePad_1(%arg0 : tensor<16x13xf32>) -> tensor<*xf32> {
%0 = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<16x13xf32>) -> tensor<*xf32>
"std.return"(%0) : (tensor<*xf32>) -> ()
} }
// CHECK-LABEL: test_PadConstantValuePad_1
// CHECK: [[RES:%.+]] = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<16x13xf32>) -> tensor<18x13xf32>
// CHECK: return [[RES]] : tensor<18x13xf32>
/// Test PadConstantPad_1
func @test_PadConstantPad_1(%arg0 : tensor<16x13xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> {
%0 = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 2, 3, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<*xf32>
"std.return"(%0) : (tensor<*xf32>) -> ()
}
// CHECK-LABEL: test_PadConstantPad_1
// CHECK: [[RES:%.+]] = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 2, 3, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<18x17xf32>
// CHECK: return [[RES]] : tensor<18x17xf32>