Support krnl loop permutation (#215)

* Define krnl.permute op.

* Support krnl.permute operation.

* Properly remove loop references.

* Re-push, Github was down.

* Need to debug interpretOp error.

* Fix lowering bug by erasing ops after full krnl IR interpretation is done, and clean up & comment code.

* Introduce permute, unroll operations.

* More debug.

* Remove std::set.

* krnl.terminate fails to be converted.

* Pass all tests, need to add legal ops as well as part of the conversion target.

* Change test format to new permute spec.

* Bug fix for nested iterate op lowering.

* Simplify error reporting.

* Fix compilation error.

* Increase comments coverage.

* Remove unnecessary imports.

* Re-trigger Jenkins

* Add permute/unroll tests.

* Retrigger Jenkins

* Using a non-trivial example.

* Add more complex example/test case.
This commit is contained in:
Tian Jin 2020-07-24 18:19:38 +08:00 committed by GitHub
parent c9e3ba2d64
commit 2e8f012195
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 317 additions and 182 deletions

View File

@ -251,3 +251,86 @@ def KrnlBlockOp : Op<Krnl_Dialect, "block"> {
$loop $tile_size attr-dict `:` functional-type($loop, results)
}];
}
def KrnlPermuteOp : Op<Krnl_Dialect, "permute"> {
let summary = "Krnl permute operation";
let description = [{
Permute a set of affine for loops using a specified permutation map.
The permutation map `map` should be constructed in such way that the
for loop referred to by the i-th operand to permute operation is sent
to the `map[i]`-th position.
For example, the following krnl dialect IR:
```
%ii, %jj, %kk = krnl.define_loops 3
krnl.permute(%ii, %jj, %kk) [1, 2, 0] : !krnl.loop, !krnl.loop, !krnl.loop
krnl.iterate (%ii, %jj, %kk) with (%ii -> %i = 0 to 10, %jj -> %j = 0 to 20, %kk -> %k = 0 to 30) {}
```
will be lowered to:
```
// Referenced by %kk
affine.for %arg0 = 0 to 30 {
// Referenced by %ii
affine.for %arg1 = 0 to 10 {
// Referenced by %jj
affine.for %arg2 = 0 to 20 {
}
}
}
```
For a more complicated example, we demonstrate 3-D tiling using krnl.block in
conjunction with krnl.permute:
```
%ii, %jj, %kk = krnl.define_loops 3
// Blocking each loop by a factor of 4.
%ib, %il = krnl.block %ii 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
%jb, %jl = krnl.block %jj 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
%kb, %kl = krnl.block %kk 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
// Move iteration over tile coordinates to be the outer loops and iterateion over
// the inter-tile elements to be the inner loops.
krnl.permute(%ib, %il, %jb, %jl, %kb, %kl) [0, 3, 1, 4, 2, 5] : !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop
krnl.iterate(%ib, %il, %jb, %jl, %kb, %kl) with (%ii -> %i = 0 to 1024, %jj -> %j = 0 to 2048, %kk -> %k = 0 to 4096) {
}
```
The above IR gets lowered to:
```
affine.for %arg0 = 0 to 1024 step 4 {
affine.for %arg1 = 0 to 2048 step 4 {
affine.for %arg2 = 0 to 4096 step 4 {
affine.for %arg3 = #map0(%arg0) to #map1(%arg0) {
affine.for %arg4 = #map0(%arg1) to #map1(%arg1) {
affine.for %arg5 = #map0(%arg2) to #map1(%arg2) {
}
}
}
}
}
}
```
}];
let arguments = (ins Variadic<AnyType>:$loops, I64ArrayAttr:$map);
let results = (outs);
let assemblyFormat = [{
`(` $loops `)` $map attr-dict `:` type($loops)
}];
}
def KrnlUnrollOp : Op<Krnl_Dialect, "unroll"> {
let summary = "Krnl unroll operation";
let description = [{
Fully unroll the specified loops.
```
krnl.unroll %i
```
unrolls the loop referred to by %i fully.
}];
let arguments = (ins AnyType:$loop);
let results = (outs);
let assemblyFormat = [{
$loop attr-dict `:` type($loop)
}];
}

View File

@ -21,9 +21,24 @@ using namespace mlir;
namespace {
void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &rewriter,
SmallVector<std::pair<Value, AffineForOp>, 4> &nestedForOps) {
rewriter.setInsertionPointAfter(iterateOp);
//===----------------------------------------------------------------------===//
// Krnl to Affine Rewrite Patterns: KrnlTerminator operation.
//===----------------------------------------------------------------------===//
class KrnlTerminatorLowering : public OpRewritePattern<KrnlTerminatorOp> {
public:
using OpRewritePattern<KrnlTerminatorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(
KrnlTerminatorOp op, PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AffineTerminatorOp>(op);
return success();
}
};
void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &builder,
llvm::SmallDenseMap<Value, AffineForOp, 4> &refToOps) {
builder.setInsertionPointAfter(iterateOp);
SmallVector<std::pair<Value, AffineForOp>, 4> currentNestedForOps;
auto boundMapAttrs =
iterateOp.getAttrOfType<ArrayAttr>(KrnlIterateOp::getBoundsAttrName())
@ -31,7 +46,7 @@ void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &rewriter,
auto operandItr =
iterateOp.operand_begin() + iterateOp.getNumOptimizedLoops();
for (size_t boundIdx = 0; boundIdx < boundMapAttrs.size(); boundIdx += 2) {
// Consume input loop operand, currently do not do anything with it.
// Consume input loop operand, at this stage, do not do anything with it.
auto unoptimizedLoopRef = *(operandItr++);
// Organize operands into lower/upper bounds in affine.for ready formats.
@ -46,11 +61,11 @@ void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &rewriter,
operands.end(), operandItr, operandItr + map.getNumInputs());
std::advance(operandItr, map.getNumInputs());
}
currentNestedForOps.emplace_back(std::make_pair(
unoptimizedLoopRef, rewriter.create<AffineForOp>(iterateOp.getLoc(),
lbOperands, lbMap, ubOperands, ubMap)));
auto forOp = builder.create<AffineForOp>(
iterateOp.getLoc(), lbOperands, lbMap, ubOperands, ubMap);
rewriter.setInsertionPoint(currentNestedForOps.back().second.getBody(),
currentNestedForOps.emplace_back(std::make_pair(unoptimizedLoopRef, forOp));
builder.setInsertionPoint(currentNestedForOps.back().second.getBody(),
currentNestedForOps.back().second.getBody()->begin());
}
@ -72,10 +87,10 @@ void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &rewriter,
if (currentNestedForOps.empty()) {
// If no loops are involved, simply move operations from within iterateOp
// body region to the parent region of iterateOp.
rewriter.setInsertionPointAfter(iterateOp);
builder.setInsertionPointAfter(iterateOp);
iterateOp.bodyRegion().walk([&](Operation *op) {
if (!op->isKnownTerminator())
op->replaceAllUsesWith(rewriter.clone(*op));
op->replaceAllUsesWith(builder.clone(*op));
});
} else {
// Transfer krnl.iterate region to innermost for op.
@ -86,56 +101,10 @@ void lowerIterateOp(KrnlIterateOp &iterateOp, OpBuilder &rewriter,
innerMostRegion.end(), iterateOp.bodyRegion().getBlocks());
}
iterateOp.erase();
nestedForOps.insert(nestedForOps.end(), currentNestedForOps.begin(),
currentNestedForOps.end());
for (const auto &pair : currentNestedForOps)
refToOps.try_emplace(pair.first, pair.second);
}
//===----------------------------------------------------------------------===//
// Krnl to Affine Rewrite Patterns: KrnlTerminator operation.
//===----------------------------------------------------------------------===//
class KrnlTerminatorLowering : public OpRewritePattern<KrnlTerminatorOp> {
public:
using OpRewritePattern<KrnlTerminatorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(
KrnlTerminatorOp op, PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AffineTerminatorOp>(op);
return success();
}
};
//===----------------------------------------------------------------------===//
// Krnl to Affine Rewrite Patterns: KrnlDefineLoops operation.
//===----------------------------------------------------------------------===//
class KrnlDefineLoopsLowering : public OpRewritePattern<KrnlDefineLoopsOp> {
public:
using OpRewritePattern<KrnlDefineLoopsOp>::OpRewritePattern;
LogicalResult matchAndRewrite(
KrnlDefineLoopsOp op, PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return success();
}
};
//===----------------------------------------------------------------------===//
// Krnl to Affine Rewrite Patterns: KrnlOptimizeLoops operation.
//===----------------------------------------------------------------------===//
class KrnlBlockOpLowering : public OpRewritePattern<KrnlBlockOp> {
public:
using OpRewritePattern<KrnlBlockOp>::OpRewritePattern;
LogicalResult matchAndRewrite(
KrnlBlockOp op, PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return success();
}
};
//===----------------------------------------------------------------------===//
// KrnlToAffineLoweringPass
//===----------------------------------------------------------------------===//
@ -148,141 +117,130 @@ struct KrnlToAffineLoweringPass
: public PassWrapper<KrnlToAffineLoweringPass, FunctionPass> {
void runOnFunction() final;
};
// Helper function to test if KrnlIterateOp is nested under another
// KrnlIterateOp.
bool isIterateOpNested(KrnlIterateOp iterateOp) {
// krnl.iterate is dynamically legal, if and only if it is enclosed by
// another krnl.iterate.
Operation *op = iterateOp;
while ((op = op->getParentOp()))
if (auto parentOp = dyn_cast<KrnlIterateOp>(op))
return true;
return false;
}
Optional<KrnlIterateOp> nextIterateOp(FuncOp function) {
Optional<KrnlIterateOp> nextIterateOp;
function.walk([&](KrnlIterateOp op) {
if (!isIterateOpNested(op))
nextIterateOp = op;
});
return nextIterateOp;
}
bool hasOnePerfectlyNestedIterateOp(KrnlIterateOp op) {
auto childrenOps = op.bodyRegion().getOps();
auto childrenOpsIter = childrenOps.begin();
if (childrenOpsIter == childrenOps.end() ||
!isa<KrnlIterateOp>(*childrenOpsIter))
return false;
if (++childrenOpsIter == childrenOps.end() ||
!(*childrenOpsIter).isKnownTerminator())
return false;
return true;
}
} // end anonymous namespace.
void KrnlToAffineLoweringPass::runOnFunction() {
auto function = getFunction();
ConversionTarget target(getContext());
target.addLegalDialect<AffineDialect, StandardOpsDialect>();
// We expect IR to be free of Krnl Dialect Ops.
target.addIllegalDialect<KrnlOpsDialect>();
// Operations that should be converted to LLVM IRs directly.
target.addLegalOp<KrnlMemcpyOp>();
target.addLegalOp<KrnlEntryPointOp>();
target.addLegalOp<KrnlGlobalOp>();
target.addLegalOp<KrnlGetRefOp>();
target.addLegalOp<KrnlIterateOp>();
OwningRewritePatternList patterns;
patterns.insert<KrnlTerminatorLowering, KrnlDefineLoopsLowering,
KrnlBlockOpLowering>(&getContext());
// Do not lower operations that pertain to schedules just yet.
target.addLegalOp<KrnlBlockOp>();
target.addLegalOp<KrnlDefineLoopsOp>();
if (failed(applyPartialConversion(function, target, patterns)))
return signalPassFailure();
OpBuilder builder(&getContext());
while (auto iterateOp = nextIterateOp(function)) {
// Collect a maximal set of loop band to lower. They must be a perfectly
// nested sequence of for loops (this limitation follows from the
// precondition of current loop manupulation utility libraries).
auto rootOp = iterateOp;
SmallVector<KrnlIterateOp, 4> loopBand = {*rootOp};
while (hasOnePerfectlyNestedIterateOp(*rootOp)) {
auto nestedIterateOp =
*rootOp->bodyRegion().getOps<KrnlIterateOp>().begin();
loopBand.emplace_back(nestedIterateOp);
rootOp = nestedIterateOp;
LogicalResult interpretOperation(Operation *op, OpBuilder &builder,
llvm::SmallDenseMap<Value, AffineForOp, 4> &loopRefToOp,
llvm::SmallPtrSetImpl<Operation *> &opsToErase) {
// Recursively interpret nested operations.
for (auto &region : op->getRegions())
for (auto &block : region.getBlocks()) {
auto &blockOps = block.getOperations();
for (auto itr = blockOps.begin(); itr != blockOps.end();)
if (failed(interpretOperation(
&(*itr), builder, loopRefToOp, opsToErase))) {
return failure();
} else {
++itr;
}
}
// Lower the band of iterateOps, initialize loopRefToLoop to be the list of
// loop reference and the for loop being referenced.
SmallVector<std::pair<Value, AffineForOp>, 4> loopRefToLoop;
for (auto op : loopBand)
lowerIterateOp(op, builder, loopRefToLoop);
if (auto defineOp = dyn_cast_or_null<KrnlDefineLoopsOp>(op)) {
// Collect users of defineLoops operations that are iterate operations.
std::vector<KrnlIterateOp> iterateOps;
for (auto result : op->getResults())
for (auto *user : result.getUsers())
if (auto iterateOp = dyn_cast_or_null<KrnlIterateOp>(user))
if (std::find(iterateOps.begin(), iterateOps.end(), iterateOp) ==
iterateOps.end())
iterateOps.push_back(dyn_cast<KrnlIterateOp>(user));
// Manually lower schedule ops.
while (!loopRefToLoop.empty()) {
Value loopRef;
AffineForOp forOp;
std::tie(loopRef, forOp) = loopRefToLoop.pop_back_val();
// Ensure that loop references are single-use during the scheduling phase.
auto loopRefUsers = loopRef.getUsers();
SmallVector<Operation *, 4> unfilteredUsers(
loopRefUsers.begin(), loopRefUsers.end()),
users;
std::copy_if(unfilteredUsers.begin(), unfilteredUsers.end(),
std::back_inserter(users),
[](Operation *op) { return !isa<KrnlIterateOp>(op); });
assert(std::distance(users.begin(), users.end()) <= 1 &&
"Loop reference used more than once.");
// No schedule primitives associated with this loop reference, move on.
if (users.empty())
continue;
// Scheduling operations detected, transform loops as directed, while
// keeping the loopRefToLoop mapping up-to-date.
auto user = users.front();
if (isa<KrnlBlockOp>(user)) {
auto blockOp = cast<KrnlBlockOp>(user);
SmallVector<AffineForOp, 2> tiledLoops;
SmallVector<AffineForOp, 1> loopsToTile = {forOp};
if (failed(tilePerfectlyNested(loopsToTile,
cast<KrnlBlockOp>(user).tile_sizeAttr().getInt(),
&tiledLoops))) {
return signalPassFailure();
// Lower iterate operations and record the mapping between loop references
// and affine for loop operations in loopRefToOp map.
if (!iterateOps.empty()) {
for (auto opToLower : iterateOps) {
if (opsToErase.count(opToLower) == 0) {
lowerIterateOp(opToLower, builder, loopRefToOp);
opsToErase.insert(opToLower);
}
assert(tiledLoops.size() == 2);
assert(blockOp.getNumResults() == 2);
// Record the tiled loop references, and their corresponding tiled for
// loops in loopRefToLoop.
loopRefToLoop.emplace_back(
std::make_pair(blockOp.getResult(0), tiledLoops[0]));
loopRefToLoop.emplace_back(
std::make_pair(blockOp.getResult(1), tiledLoops[1]));
}
}
opsToErase.insert(op);
return success();
} else if (auto iterateOp = dyn_cast_or_null<KrnlIterateOp>(op)) {
// If an iterateOp has no unoptimized loop references, then we need to lower
// them manually.
if (opsToErase.count(op) == 0) {
lowerIterateOp(iterateOp, builder, loopRefToOp);
opsToErase.insert(iterateOp);
}
return success();
} else if (auto blockOp = dyn_cast_or_null<KrnlBlockOp>(op)) {
SmallVector<AffineForOp, 2> tiledLoops;
SmallVector<AffineForOp, 1> loopsToTile = {loopRefToOp[blockOp.loop()]};
if (failed(tilePerfectlyNested(
loopsToTile, blockOp.tile_sizeAttr().getInt(), &tiledLoops))) {
return failure();
}
assert(tiledLoops.size() == 2);
assert(blockOp.getNumResults() == 2);
// Record the tiled loop references, and their corresponding tiled
// for loops in loopRefToLoop.
loopRefToOp[blockOp.getResult(0)] = tiledLoops[0];
loopRefToOp[blockOp.getResult(1)] = tiledLoops[1];
opsToErase.insert(op);
return success();
} else if (auto permuteOp = dyn_cast_or_null<KrnlPermuteOp>(op)) {
// Collect loops to permute.
SmallVector<AffineForOp, 4> loopsToPermute;
std::transform(permuteOp.operand_begin(), permuteOp.operand_end(),
std::back_inserter(loopsToPermute),
[&](const Value &val) { return loopRefToOp[val]; });
// Construct permutation map from integer array attribute.
SmallVector<unsigned int, 4> permuteMap;
for (const auto &attr : permuteOp.map().getAsRange<IntegerAttr>())
permuteMap.emplace_back(attr.getValue().getSExtValue());
// Perform loop permutation.
permuteLoops(loopsToPermute, permuteMap);
opsToErase.insert(op);
return success();
} else if (auto unrollOp = dyn_cast_or_null<KrnlUnrollOp>(op)) {
// Unroll the affine for loop fully.
auto loopRef = unrollOp.loop();
loopUnrollFull(loopRefToOp[loopRef]);
opsToErase.insert(op);
return success();
}
// KrnlIterateOp should be all gone by now.
target.addIllegalOp<KrnlIterateOp>();
// Remove/lower schedule related operations.
target.addIllegalOp<KrnlDefineLoopsOp>();
target.addIllegalOp<KrnlBlockOp>();
if (failed(applyPartialConversion(function, target, patterns)))
return signalPassFailure();
return success();
}
void KrnlToAffineLoweringPass::runOnFunction() {
OpBuilder builder(&getContext());
mlir::Operation *funcOp = getFunction();
// Interpret krnl dialect operations while looping recursively through
// operations within the current function, note that erasing operations while
// iterating is tricky because it can invalidate the iterator, so we collect
// the operations to be erased in a small ptr set `opsToErase`, and only erase
// after iteration completes.
llvm::SmallDenseMap<Value, AffineForOp, 4> loopRefToOp;
llvm::SmallPtrSet<Operation *, 4> opsToErase;
if (failed(interpretOperation(funcOp, builder, loopRefToOp, opsToErase))) {
signalPassFailure();
return;
}
// Erase interpreted operations.
for (const auto &op : opsToErase)
op->erase();
ConversionTarget target(getContext());
target.addIllegalOp<KrnlTerminatorOp>();
target.addLegalOp<AffineTerminatorOp>();
OwningRewritePatternList patterns;
patterns.insert<KrnlTerminatorLowering>(&getContext());
DenseSet<Operation *> unconverted;
if (failed(applyPartialConversion(
getFunction(), target, patterns, &unconverted)))
signalPassFailure();
}
} // namespace
std::unique_ptr<Pass> mlir::createLowerKrnlPass() {

View File

@ -0,0 +1,69 @@
// RUN: onnx-mlir-opt --lower-krnl %s -split-input-file | FileCheck %s
func @simple_permute() {
%ii, %jj = krnl.define_loops 2
krnl.permute(%ii, %jj) [1, 0] : !krnl.loop, !krnl.loop
krnl.iterate(%ii, %jj) with (%ii -> %i = 0 to 10, %jj -> %j = 0 to 20) {
%foo = addi %i, %i : index
}
// CHECK-LABEL: simple_permute
// CHECK-NEXT: affine.for [[OUTER_LOOP_IV:%.+]] = 0 to 20 {
// CHECK-NEXT: affine.for [[INNER_LOOP_IV:%.+]] = 0 to 10 {
// CHECK-NEXT: [[ADD:%.+]] = addi [[INNER_LOOP_IV]], [[INNER_LOOP_IV]] : index
// CHECK-NEXT: }
// CHECK-NEXT: }
return
}
// -----
func @tiling() {
%ii, %ij = krnl.define_loops 2
%ib, %il = krnl.block %ii 5 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
%jb, %jl = krnl.block %ij 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
krnl.permute(%ib, %il, %jb, %jl) [0, 2, 1, 3] : !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop
krnl.iterate(%ib, %jb, %il, %jl) with (%ii -> %i = 0 to 10, %ij -> %j = 0 to 20) {
%foo = addi %i, %i : index
}
// CHECK-LABEL: tiling
// CHECK-NEXT: affine.for [[I_BLOCK_IV:%.+]] = 0 to 10 step 5 {
// CHECK-NEXT: affine.for [[J_BLOCK_IV:%.+]] = 0 to 20 step 4 {
// CHECK-NEXT: affine.for [[I_LOCAL_IV:%.+]] = #map{{.*}}([[I_BLOCK_IV]]) to #map{{.*}}([[I_BLOCK_IV]]) {
// CHECK-NEXT: affine.for [[J_LOCAL_IV:%.+]] = #map{{.*}}([[J_BLOCK_IV]]) to #map{{.*}}([[J_BLOCK_IV]]) {
// CHECK-NEXT: %0 = addi %arg2, %arg2 : index
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
return
}
func @tiling3d() {
%ii, %jj, %kk = krnl.define_loops 3
// Blocking each loop by a factor of 4.
%ib, %il = krnl.block %ii 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
%jb, %jl = krnl.block %jj 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
%kb, %kl = krnl.block %kk 4 : (!krnl.loop) -> (!krnl.loop, !krnl.loop)
// Move iteration over tile coordinates to be the outer loops and iterateion over
// the inter-tile elements to be the inner loops.
krnl.permute(%ib, %il, %jb, %jl, %kb, %kl) [0, 3, 1, 4, 2, 5] : !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop
krnl.iterate(%ib, %il, %jb, %jl, %kb, %kl) with (%ii -> %i = 0 to 1024, %jj -> %j = 0 to 2048, %kk -> %k = 0 to 4096) {
}
// CHECK-LABEL: tiling3d
// CHECK-NEXT: affine.for [[I_BLOCK_IV:%.+]] = 0 to 1024 step 4 {
// CHECK-NEXT: affine.for [[J_BLOCK_IV:%.+]] = 0 to 2048 step 4 {
// CHECK-NEXT: affine.for [[K_BLOCK_IV:%.+]] = 0 to 4096 step 4 {
// CHECK-NEXT: affine.for [[I_INNER_IV:%.+]] = #map0([[I_BLOCK_IV]]) to #map1([[I_BLOCK_IV]]) {
// CHECK-NEXT: affine.for [[J_INNER_IV:%.+]] = #map0([[J_BLOCK_IV]]) to #map1([[J_BLOCK_IV]]) {
// CHECK-NEXT: affine.for [[K_INNER_IV:%.+]] = #map0([[K_BLOCK_IV]]) to #map1([[K_BLOCK_IV]]) {
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
return
}

View File

@ -0,0 +1,25 @@
// RUN: onnx-mlir-opt --lower-krnl %s -split-input-file | FileCheck %s
func @simple_unroll() {
%ii = krnl.define_loops 1
krnl.unroll %ii : !krnl.loop
krnl.iterate(%ii) with (%ii -> %i = 0 to 4) {
%c1 = constant 1 : index
%foo = addi %i, %c1 : index
}
// CHECK-LABEL: simple_unroll
// CHECK-NEXT: [[CONST_IV_INIT:%.+]] = constant 0 : index
// CHECK-NEXT: [[CONST_ONE_0:%.+]] = constant 1 : index
// CHECK-NEXT: [[FIRST_RES:%.+]] = addi [[CONST_IV_INIT]], [[CONST_ONE_0]] : index
//CHECK-NEST: [[IV_TWO:%.+]] = affine.apply #map{{.+}}([[CONST_IV_INIT]])
//CHECK-NEST: [[CONST_ONE_1:%.+]] = constant 1 : index
//CHECK-NEST: %2 = addi %1, [[CONST_ONE_1]] : index
//CHECK-NEST: [[IV_THREE:%.+]] = affine.apply #map{{.+}}([[CONST_IV_INIT]])
//CHECK-NEST: [[CONST_ONE_2:%.+]] = constant 1 : index
//CHECK-NEST: %4 = addi %3, [[CONST_ONE_2]] : index
//CHECK-NEST: [[IV_FOUR:%.+]] = affine.apply #map{{.+}}([[CONST_IV_INIT]])
//CHECK-NEST: [[CONST_ONE_3:%.+]] = constant 1 : index
//CHECK-NEST: %6 = addi %5, [[CONST_ONE_3]] : index
return
}