Using attribute setters for maxpool (#105)
* using attribute setters for maxpool * fix typos, added handling of storage order, simplified code
This commit is contained in:
parent
e02aa87748
commit
3b1c29c078
|
@ -24,12 +24,29 @@
|
|||
using namespace mlir;
|
||||
using namespace mlir::OpTrait::util;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ONNX Helper functions
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static size_t ArrayAttrSize(ArrayAttr a) { return a.size(); }
|
||||
|
||||
static size_t ArrayAttrSize(Optional<ArrayAttr> a) {
|
||||
return a.getValue().size();
|
||||
}
|
||||
|
||||
static int64_t ArrayAttrIntVal(ArrayAttr a, int i) {
|
||||
return (a.getValue()[i]).cast<IntegerAttr>().getInt();
|
||||
}
|
||||
|
||||
static int64_t ArrayAttrIntVal(Optional<ArrayAttr> a, int i) {
|
||||
return (a.getValue().getValue()[i]).cast<IntegerAttr>().getInt();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Get reduction type
|
||||
//===----------------------------------------------------------------------===//
|
||||
RankedTensorType getReductionOutputType(RankedTensorType operandTy,
|
||||
Optional<ArrayAttr> axesAttrs,
|
||||
APInt keepdims) {
|
||||
RankedTensorType getReductionOutputType(
|
||||
RankedTensorType operandTy, Optional<ArrayAttr> axesAttrs, APInt keepdims) {
|
||||
int64_t rank = operandTy.getRank();
|
||||
|
||||
SmallVector<int64_t, 4> axes;
|
||||
|
@ -87,19 +104,18 @@ ONNXOpsDialect::ONNXOpsDialect(mlir::MLIRContext *ctx)
|
|||
}
|
||||
|
||||
void ONNXEntryPointOp::build(mlir::Builder *builder,
|
||||
mlir::OperationState &state, mlir::FuncOp function,
|
||||
int numInputs, int numOutputs) {
|
||||
mlir::OperationState &state, mlir::FuncOp function, int numInputs,
|
||||
int numOutputs) {
|
||||
state.addAttribute(ONNXEntryPointOp::getEntryPointFuncAttrName(),
|
||||
builder->getSymbolRefAttr(function));
|
||||
builder->getSymbolRefAttr(function));
|
||||
state.addAttribute(ONNXEntryPointOp::getNumInputsAttrName(),
|
||||
builder->getI32IntegerAttr(numInputs));
|
||||
builder->getI32IntegerAttr(numInputs));
|
||||
state.addAttribute(ONNXEntryPointOp::getNumOutputsAttrName(),
|
||||
builder->getI32IntegerAttr(numOutputs));
|
||||
builder->getI32IntegerAttr(numOutputs));
|
||||
}
|
||||
|
||||
ONNXEntryPointOp ONNXEntryPointOp::create(mlir::Location location,
|
||||
mlir::FuncOp &func, int numInputs,
|
||||
int numOutputs) {
|
||||
mlir::FuncOp &func, int numInputs, int numOutputs) {
|
||||
mlir::OperationState state(location, "onnx.EntryPoint");
|
||||
Builder builder(location->getContext());
|
||||
mlir::ONNXEntryPointOp::build(&builder, state, func, numInputs, numOutputs);
|
||||
|
@ -552,9 +568,9 @@ void ONNXGemmOp::inferShapes() {
|
|||
int rank = shape.size();
|
||||
if ((rank > 2) ||
|
||||
(rank >= 1 && shape[rank - 1] != -1 && N != -1 &&
|
||||
N != shape[rank - 1] && shape[rank - 1] != 1) ||
|
||||
N != shape[rank - 1] && shape[rank - 1] != 1) ||
|
||||
(rank == 2 && shape[rank - 2] != -1 && M != -1 &&
|
||||
M != shape[rank - 2] && shape[rank - 2] != 1)) {
|
||||
M != shape[rank - 2] && shape[rank - 2] != 1)) {
|
||||
emitError("Bias shape mismatched.");
|
||||
}
|
||||
}
|
||||
|
@ -885,111 +901,103 @@ void ONNXConvNoBiasOp::inferShapes() {
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// MaxPoolSingleOut
|
||||
// Infer shape attributes output:
|
||||
// - auto_pad set to NOTSET;
|
||||
// - dilations, strides: set to 1 if not defined by user;
|
||||
// - pads: set to proper value, 0 if not defined by user.
|
||||
|
||||
void ONNXMaxPoolSingleOutOp::inferShapes() {
|
||||
// Cannot infer shape if no shape exists.
|
||||
if (!X().getType().isa<RankedTensorType>())
|
||||
return;
|
||||
auto builder = mlir::Builder(this->getContext());
|
||||
|
||||
// 1) get shape of input
|
||||
// 1) Get shape of input.
|
||||
auto xTy = X().getType().cast<RankedTensorType>();
|
||||
auto xShape = xTy.getShape();
|
||||
auto xRank = xShape.size();
|
||||
|
||||
// 2) analyse parameters
|
||||
// get kernel sizes from kernel_shape attribute
|
||||
// 2) Analyse parameters. Get kernel sizes from kernel_shape attribute.
|
||||
auto kernelShape = kernel_shape();
|
||||
if (!kernelShape)
|
||||
emitError(
|
||||
"kernel_shape is a mandatory attribute for which there is no default.");
|
||||
auto kernelShapeArray = kernelShape.getValue();
|
||||
auto kernelRank = kernelShape.size();
|
||||
"kernel_shape is a mandatory attribute for which there is no default");
|
||||
auto kernelRank = ArrayAttrSize(kernelShape);
|
||||
if (kernelRank > xRank)
|
||||
emitError("kernel_shape spatial dimension is too large.");
|
||||
emitError("kernel_shape spatial dimension is too large");
|
||||
auto kernelOffset = xRank - kernelRank;
|
||||
|
||||
// ceil mode
|
||||
// Ceil mode.
|
||||
auto ceilMode = ceil_mode().getSExtValue();
|
||||
|
||||
// dilatation
|
||||
SmallVector<int64_t, 4> actualDilations;
|
||||
// Dilatation.
|
||||
auto dilationsOpt = dilations();
|
||||
if (dilationsOpt.hasValue()) {
|
||||
auto dilationsArray =
|
||||
dilationsOpt.getValue().getValue(); // opt -> attr -> array
|
||||
if (dilationsArray.size() != kernelRank)
|
||||
emitError("dialation rank is not the same as the spatial rank.");
|
||||
// fill in the actual values
|
||||
if (ArrayAttrSize(dilationsOpt) != kernelRank)
|
||||
emitError("dialation rank is not the same as the spatial rank");
|
||||
// Test values.
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
int64_t d = (dilationsArray[i]).cast<IntegerAttr>().getInt();
|
||||
if (d < 1)
|
||||
emitError("dialation value must be nonzero positive.");
|
||||
actualDilations.emplace_back(d);
|
||||
if (ArrayAttrIntVal(dilationsOpt, i) < 1)
|
||||
emitError("dialation value must be nonzero positive");
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
actualDilations.emplace_back(1);
|
||||
}
|
||||
// Default dilatation is needed.
|
||||
SmallVector<int64_t, 4> defaultVals(kernelRank, 1);
|
||||
// Convert to ArrayRef, then build attribute, then store attribute.
|
||||
ArrayRef<int64_t> defaultRefs(defaultVals);
|
||||
auto defaultAttr = builder.getI64ArrayAttr(defaultRefs);
|
||||
dilationsAttr(defaultAttr);
|
||||
dilationsOpt = dilations();
|
||||
}
|
||||
|
||||
// storage order
|
||||
// Storage order.
|
||||
auto storageOrder = storage_order().getSExtValue();
|
||||
if (storageOrder != 0)
|
||||
emitError("column major storage order not supported at this time");
|
||||
|
||||
// strides
|
||||
SmallVector<int64_t, 4> actualStrides;
|
||||
// Strides.
|
||||
auto stridesOpt = strides();
|
||||
if (stridesOpt.hasValue()) {
|
||||
auto stridesArray = stridesOpt.getValue().getValue();
|
||||
if (stridesArray.size() != kernelRank)
|
||||
emitError("strides rank is not the same as the spatial rank.");
|
||||
// fill in the actual values
|
||||
if (ArrayAttrSize(stridesOpt) != kernelRank)
|
||||
emitError("strides rank is not the same as the spatial rank");
|
||||
// Check values.
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
int64_t s = (stridesArray[i]).cast<IntegerAttr>().getInt();
|
||||
if (s < 1)
|
||||
emitError("strides value must be nonzero positive.");
|
||||
actualStrides.emplace_back(s);
|
||||
if (ArrayAttrIntVal(stridesOpt, i) < 1)
|
||||
emitError("strides value must be nonzero positive");
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
actualStrides.emplace_back(1);
|
||||
}
|
||||
SmallVector<int64_t, 4> defaultVals(kernelRank, 1);
|
||||
// Convert to ArrayRef, then build attribute, then store attribute.
|
||||
ArrayRef<int64_t> defaultRefs(defaultVals);
|
||||
auto defaultAttr = builder.getI64ArrayAttr(defaultRefs);
|
||||
stridesAttr(defaultAttr);
|
||||
stridesOpt = strides();
|
||||
}
|
||||
|
||||
// now try to find padding, getting auto_pad attribute first
|
||||
// Now try to find padding, getting auto_pad attribute first.
|
||||
auto autoPad = auto_pad();
|
||||
// and then investigate the various different cases
|
||||
SmallVector<int64_t, 4> actualPads;
|
||||
auto defaultPads = false;
|
||||
// And then investigate the various different cases.
|
||||
SmallVector<int64_t, 4> actualPads(2 * kernelRank, 0);
|
||||
if (autoPad == "NOTSET") {
|
||||
auto padsOpt = pads();
|
||||
if (padsOpt.hasValue()) {
|
||||
auto padsArray = padsOpt.getValue().getValue();
|
||||
// pads consists of two entries for each spatial axis.
|
||||
if (padsArray.size() != 2 * kernelRank)
|
||||
emitError("pads rank is not twice the spatial rank.");
|
||||
// fill in the actual values
|
||||
// Pads consists of two entries for each spatial axis.
|
||||
if (ArrayAttrSize(padsOpt) != 2 * kernelRank)
|
||||
emitError("pads rank is not twice the spatial rank");
|
||||
// Check values
|
||||
for (int i = 0; i < 2 * kernelRank; ++i) {
|
||||
int64_t p = (padsArray[i]).cast<IntegerAttr>().getInt();
|
||||
int64_t p = ArrayAttrIntVal(padsOpt, i);
|
||||
if (p < 0)
|
||||
emitError("pads value must be nonnegative.");
|
||||
actualPads.emplace_back(p);
|
||||
emitError("pads value must be nonnegative");
|
||||
actualPads[i] = p;
|
||||
}
|
||||
} else {
|
||||
// pads are not defined, default to value 0
|
||||
defaultPads = true;
|
||||
}
|
||||
} else if (autoPad == "VALID") {
|
||||
defaultPads = true;
|
||||
} else if (autoPad == "SAME_UPPER" || autoPad == "SAME_LOWER") {
|
||||
// init pad with zero
|
||||
for (int i = 0; i < 2 * kernelRank; ++i) {
|
||||
actualPads.emplace_back(0);
|
||||
}
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
auto inputSpatialShape = xShape[kernelOffset + i];
|
||||
auto kernelSpatialShape =
|
||||
(kernelShapeArray[i]).cast<IntegerAttr>().getInt();
|
||||
auto dilations = actualDilations[i];
|
||||
auto strideSpatialShape = actualStrides[i];
|
||||
auto kernelSpatialShape = ArrayAttrIntVal(kernelShape, i);
|
||||
auto dilations = ArrayAttrIntVal(dilationsOpt, i);
|
||||
auto strideSpatialShape = ArrayAttrIntVal(stridesOpt, i);
|
||||
int64_t outputSpatialShape =
|
||||
ceil((1.0 * inputSpatialShape) / (1.0 * strideSpatialShape));
|
||||
auto sumOfPad = (outputSpatialShape - 1) * strideSpatialShape +
|
||||
|
@ -1004,29 +1012,27 @@ void ONNXMaxPoolSingleOutOp::inferShapes() {
|
|||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
} else if (autoPad != "VALID") {
|
||||
emitError("auto_pad of unknown / unsupported value.");
|
||||
}
|
||||
// handle case where default pad values must be used
|
||||
if (defaultPads) {
|
||||
for (int i = 0; i < 2 * kernelRank; ++i) {
|
||||
actualPads.emplace_back(0);
|
||||
}
|
||||
// Set pads values in attributes.
|
||||
{
|
||||
ArrayRef<int64_t> defaultRefs(actualPads);
|
||||
auto defaultAttr = builder.getI64ArrayAttr(defaultRefs);
|
||||
padsAttr(defaultAttr);
|
||||
auto defaultAutoPadAttr = builder.getStringAttr("NOTSET");
|
||||
auto_padAttr(defaultAutoPadAttr);
|
||||
}
|
||||
|
||||
// initialize output shape
|
||||
// Initialize output shape.
|
||||
SmallVector<int64_t, 4> yShape(xShape.begin(), xShape.end());
|
||||
// for all kernel dimensions
|
||||
// Process for all kernel dimensions.
|
||||
for (int i = 0; i < kernelRank; ++i) {
|
||||
auto inputSpatialShape = xShape[kernelOffset + i];
|
||||
auto padShape = actualPads[i] + actualPads[kernelRank + i];
|
||||
auto kernelSpatialShape =
|
||||
(kernelShapeArray[i]).cast<IntegerAttr>().getInt();
|
||||
auto dilations = actualDilations[i];
|
||||
auto strideSpatialShape = actualStrides[i];
|
||||
/// output_spatial_shape[i] = ceil( (input_spatial_shape[i] + pad_shape[i] -
|
||||
// ((kernel_spatial_shape[i] - 1) * dilations[i] + 1)) /
|
||||
// strides_spatial_shape[i] + 1)
|
||||
auto kernelSpatialShape = ArrayAttrIntVal(kernelShape, i);
|
||||
auto dilations = ArrayAttrIntVal(dilationsOpt, i);
|
||||
auto strideSpatialShape = ArrayAttrIntVal(stridesOpt, i);
|
||||
double numerator = inputSpatialShape + padShape -
|
||||
((kernelSpatialShape - 1) * dilations + 1);
|
||||
double denominator = strideSpatialShape;
|
||||
|
|
|
@ -6,7 +6,7 @@ func @test_default_maxpoolsingleout(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "VALID", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [1, 1, 1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x30x30xf32>
|
||||
|
||||
|
||||
|
@ -16,7 +16,7 @@ func @test_default_maxpoolsingleout_defpad(%arg0 : tensor<5x5x32x32xf32>) -> ten
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_defpad
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x30x30xf32>
|
||||
|
||||
|
||||
|
@ -26,7 +26,7 @@ func @test_default_maxpoolsingleout_pad(%arg0 : tensor<5x5x32x32xf32>) -> tensor
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_pad
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [1, 1, 1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x32x32xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x32x32xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x32x32xf32>
|
||||
|
||||
|
||||
|
@ -36,7 +36,7 @@ func @test_default_maxpoolsingleout_pad_nonunif(%arg0 : tensor<5x5x32x32xf32>) -
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_pad_nonunif
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [5, 3], pads = [2, 1, 1, 0]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x31x31xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [5, 3], pads = [2, 1, 1, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x31x31xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x31x31xf32>
|
||||
|
||||
|
||||
|
@ -46,7 +46,7 @@ func @test_default_maxpoolsingleout_strides(%arg0 : tensor<5x5x32x32xf32>) -> te
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_strides
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x16x16xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x16x16xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x16x16xf32>
|
||||
|
||||
|
||||
|
@ -56,7 +56,7 @@ func @test_default_maxpoolsingleout_strides_nonunifpad(%arg0 : tensor<5x5x30x32x
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_strides_nonunifpad
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x15x16xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x15x16xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x15x16xf32>
|
||||
|
||||
|
||||
|
@ -66,7 +66,7 @@ func @test_default_maxpoolsingleout_strides_nonunifpad_ceil(%arg0 : tensor<5x5x3
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_strides_nonunifpad_ceil
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 1 : i64, kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x16x16xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 1 : i64, dilations = [1, 1], kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x16x16xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x16x16xf32>
|
||||
|
||||
|
||||
|
@ -76,7 +76,7 @@ func @test_default_maxpoolsingleout_strides_dilatation(%arg0 : tensor<5x5x8x8xf3
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_strides_dilatation
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [2, 2], kernel_shape = [2, 2], strides = [3, 3]} : (tensor<5x5x8x8xf32>) -> tensor<5x5x2x2xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [2, 2], kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [3, 3]} : (tensor<5x5x8x8xf32>) -> tensor<5x5x2x2xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x2x2xf32>
|
||||
|
||||
/// Test the default behavior of Max Pool with dilatation
|
||||
|
@ -85,7 +85,7 @@ func @test_default_maxpoolsingleout_upper(%arg0 : tensor<5x5x16x13xf32>) -> tens
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_upper
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "SAME_UPPER", ceil_mode = 0 : i64, kernel_shape = [4, 4], strides = [4, 4]} : (tensor<5x5x16x13xf32>) -> tensor<5x5x4x4xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [4, 4], pads = [0, 1, 0, 2], strides = [4, 4]} : (tensor<5x5x16x13xf32>) -> tensor<5x5x4x4xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x4x4xf32>
|
||||
|
||||
|
||||
|
@ -95,6 +95,6 @@ func @test_default_maxpoolsingleout_lower(%arg0 : tensor<5x5x16x13xf32>) -> tens
|
|||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_default_maxpoolsingleout_lower
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "SAME_LOWER", ceil_mode = 0 : i64, kernel_shape = [4, 4], strides = [4, 4]} : (tensor<5x5x16x13xf32>) -> tensor<5x5x4x4xf32>
|
||||
// CHECK: [[RES:%.+]] = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, dilations = [1, 1], kernel_shape = [4, 4], pads = [0, 2, 0, 1], strides = [4, 4]} : (tensor<5x5x16x13xf32>) -> tensor<5x5x4x4xf32>
|
||||
// CHECK: return [[RES]] : tensor<5x5x4x4xf32>
|
||||
|
||||
|
|
Loading…
Reference in New Issue