Add ONNXScalerOp pattern (#220)

* add ONNXScalerOp pattern

* move ScalerOp rewrite rule to Rewrite.cpp .td

* attempt to fix format issue

* fixing format issue

* fixing format issue2

* add ONNXScalerOp pattern

* move ScalerOp rewrite rule to Rewrite.cpp .td

* attempt to fix format issue

* fixing format issue

* fixing format issue2
This commit is contained in:
Anh Leu 2020-07-17 10:01:30 -05:00 committed by GitHub
parent 13b8591af8
commit 4b33c312d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 164 additions and 1 deletions

View File

@ -6090,6 +6090,7 @@ def ONNXSVMRegressorOp:ONNX_Op<"SVMRegressor",
def ONNXScalerOp:ONNX_Op<"Scaler",
[NoSideEffect]> {
let hasCanonicalizer = 1;
let summary = "ONNX Scaler operation";
let description = [{
"Rescale input data, for example to standardize features by removing the mean and scaling to unit variance."

View File

@ -18,6 +18,23 @@ using namespace mlir;
namespace {
// Create an DenseElementsAttr of ArrayAttr.
// This function is used to get Value Type for Scaler function.
DenseElementsAttr createDenseArrayAttr(
PatternRewriter &rewriter, ArrayAttr origAttrs) {
mlir::Type elementType = rewriter.getF32Type();
int nElements = origAttrs.getValue().size();
SmallVector<float, 4> wrapper(nElements, 0);
if (origAttrs) {
for (int i = 0; i < nElements; ++i) {
wrapper[i] = origAttrs.getValue()[i].cast<FloatAttr>().getValueAsDouble();
}
}
return DenseElementsAttr::get(
RankedTensorType::get(wrapper.size(), elementType),
llvm::makeArrayRef(wrapper));
}
// Check whether an ArrayAttr contains non-zero values or not.
bool hasNonZeroInArrayAttr(ArrayAttr attrs) {
bool allZeros = true;
@ -92,3 +109,13 @@ void ONNXConvOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ConvOpPaddingPattern>(context);
}
/// on the ONNXScalerOp.
void ONNXScalerOp::getCanonicalizationPatterns(
OwningRewritePatternList &result, MLIRContext *context) {
result.insert<ScalerNullPattern>(context);
result.insert<ScalerNullPattern2>(context);
result.insert<ScalerNoScalePattern>(context);
result.insert<ScalerNoOffsetPattern>(context);
result.insert<ScalerPattern>(context);
}

View File

@ -100,4 +100,56 @@ def ConvOpPaddingPattern: Pat<
[(HasNonZeroInArrayAttr:$pads), (IsNotStringAttrOfValue<"VALID"> $auto_pad)]
>;
//===----------------------------------------------------------------------===//
// ONNXScalerOp %X, %Offest, %Scale
// x input, a offset, b scale
//===----------------------------------------------------------------------===//
// Useful test definitions.
def AttributeIsNull :
Constraint<CPred<"! ($_self)">,
"Attribute is null">;
def HasFloatType : Constraint<CPred<"(($_self).getType().dyn_cast<ShapedType>().getElementType().isF32())">>;
// Create a DenseElementsAttr from an ArrayAttr.
def createDenseArrayAttr:
NativeCodeCall<"createDenseArrayAttr($_builder, $0)">;
def ScalerT : NativeCodeCall<"$_builder.getI64IntegerAttr(0)">;
// No attribute
def ScalerNullPattern : Pat<
(ONNXScalerOp $x, $a, $b),
(replaceWithValue $x),
[(HasFloatType:$x),(AttributeIsNull:$a), (AttributeIsNull:$b)]>;
// No attribute, input x not float type
def ScalerNullPattern2 : Pat<
(ONNXScalerOp $x, $a, $b),
(ONNXCastOp $x, (ScalerT)),
[(AttributeIsNull:$a), (AttributeIsNull:$b)]>;
// No scale
def ScalerNoScalePattern : Pat<
(ONNXScalerOp $x, $a, $b),
(ONNXSubOp $x,
(ONNXConstantOp (GetNullAttr), (createDenseArrayAttr $a))),
[(AttributeIsNull:$b)]>;
// No offset
def ScalerNoOffsetPattern : Pat<
(ONNXScalerOp $x, $a, $b),
(ONNXMulOp $x,
(ONNXConstantOp (GetNullAttr), (createDenseArrayAttr $b))),
[(AttributeIsNull:$a)]>;
// Normal ONNXScalerOp
def ScalerPattern : Pat<
(ONNXScalerOp $x, $a, $b),
(ONNXMulOp
(ONNXSubOp $x,
(ONNXConstantOp (GetNullAttr), (createDenseArrayAttr $a))),
(ONNXConstantOp (GetNullAttr), (createDenseArrayAttr $b)))>;
#endif // ONNX_REWRITE

View File

@ -96,3 +96,86 @@ func @test_gemm_add_fusion_rank3(%arg0: tensor<128x128x256xf32>, %arg1: tensor<1
// CHECK-NEXT: [[GEMM:%.+]] = "onnx.Gemm"(%{{.*}}, %{{.*}}, %{{.*}}) {alpha = 1.000000e+00 : f32, beta = 1.000000e+00 : f32, transA = 0 : i64, transB = 0 : i64} : (tensor<128x128x256xf32>, tensor<128x128x256xf32>, tensor<256xf32>) -> tensor<*xf32>
// return [[GEMM]] : tensor<*xf32>
}
// -----
// Scaler Pattern test
// -----
// null
// CHECK-LABEL: func @test_scaler_null_float(%{{.*}}: tensor<3xf32>) -> tensor<3xf32> {
func @test_scaler_null_float(%arg0: tensor<3xf32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) : (tensor<3xf32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: return %arg0 : tensor<3xf32>
}
// -----
// null not float
// CHECK-LABEL: func @test_scaler_null(%{{.*}}: tensor<3xi32>) -> tensor<3xf32> {
func @test_scaler_null(%arg0: tensor<3xi32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) : (tensor<3xi32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: %0 = "onnx.Cast"(%arg0) {to = 0 : i64} : (tensor<3xi32>) -> tensor<3xf32>
// CHECK-NEXT: return %0 : tensor<3xf32>
}
// -----
// scaler no offset
// CHECK-LABEL: func @test_scaler_no_offset(%{{.*}}: tensor<3xf32>) -> tensor<3xf32> {
func @test_scaler_no_offset(%arg0: tensor<3xf32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) {scale = [3.125000e-02 : f32, 0.0909090936 : f32, 0.0333333351 : f32]} : (tensor<3xf32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<[3.125000e-02, 0.0909090936, 0.0333333351]> : tensor<3xf32>} : () -> tensor<3xf32>
// CHECK-NEXT: %1 = "onnx.Mul"(%arg0, %0) : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK-NEXT: return %1 : tensor<3xf32>
}
// -----
// scaler no scale
// CHECK-LABEL: func @test_scaler_no_scale(%{{.*}}: tensor<3xf32>) -> tensor<3xf32> {
func @test_scaler_no_scale(%arg0: tensor<3xf32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) {offset = [1986.99939 : f32, 0.99999988 : f32, 0.999999701 : f32]} : (tensor<3xf32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<[1986.99939, 0.99999988, 0.999999701]> : tensor<3xf32>} : () -> tensor<3xf32>
// CHECK-NEXT: %1 = "onnx.Sub"(%arg0, %0) : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK-NEXT: return %1 : tensor<3xf32>
}
// -----
// normal scaler
// CHECK-LABEL: func @test_scaler_normal(%{{.*}}: tensor<3xf32>) -> tensor<3xf32> {
func @test_scaler_normal(%arg0: tensor<3xf32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) {offset = [1986.99939 : f32, 0.99999988 : f32, 0.999999701 : f32], scale = [3.125000e-02 : f32, 0.0909090936 : f32, 0.0333333351 : f32]} : (tensor<3xf32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<[1986.99939, 0.99999988, 0.999999701]> : tensor<3xf32>} : () -> tensor<3xf32>
// CHECK-NEXT: %1 = "onnx.Sub"(%arg0, %0) : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK-NEXT: %2 = "onnx.Constant"() {value = dense<[3.125000e-02, 0.0909090936, 0.0333333351]> : tensor<3xf32>} : () -> tensor<3xf32>
// CHECK-NEXT: %3 = "onnx.Mul"(%1, %2) : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK-NEXT: return %3 : tensor<3xf32>
}
// -----
// normal scaler with constant offset and scale
// CHECK-LABEL: func @test_scaler_constant(%{{.*}}: tensor<3xf32>) -> tensor<3xf32> {
func @test_scaler_constant(%arg0: tensor<3xf32>) -> tensor<3xf32> {
%0 = "onnx.Scaler"(%arg0) {offset = [1986.99939 : f32], scale = [3.125000e-02 : f32]} : (tensor<3xf32>) -> tensor<3xf32>
return %0 : tensor<3xf32>
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<1986.99939> : tensor<1xf32>} : () -> tensor<1xf32>
// CHECK-NEXT: %1 = "onnx.Sub"(%arg0, %0) : (tensor<3xf32>, tensor<1xf32>) -> tensor<3xf32>
// CHECK-NEXT: %2 = "onnx.Constant"() {value = dense<3.125000e-02> : tensor<1xf32>} : () -> tensor<1xf32>
// CHECK-NEXT: %3 = "onnx.Mul"(%1, %2) : (tensor<3xf32>, tensor<1xf32>) -> tensor<3xf32>
// CHECK-NEXT: return %3 : tensor<3xf32>
}

View File

@ -256,7 +256,7 @@ OpsWithShapeInference = [
]
# Operations supporting canonicalization.
OpsWithCanonicalizer = ['Add', 'Identity', 'Gemm', 'Conv']
OpsWithCanonicalizer = ['Add', 'Identity', 'Gemm', 'Conv', 'Scaler']
# Operations who have operands that, if produced by constant operations, should
# be promoted to become an attribute (via attribute promotion).