Unify codes in shape inference and conversion (#98)
* Use AffineMap * Shared AffineMap * AffineMap for Conv/Pooling * Create helper files * Remove changes for Relu * Remove redundant includes * Use AffineMap for AveragePool's shape inference * Add MLIR tests for unknown dimension case * Extract a method AffineMapIntConstant * Comment stylist and include path Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
This commit is contained in:
parent
d65a6e72dd
commit
4d8b855c17
|
@ -8,7 +8,6 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
#include "src/Conversion/ONNXToKrnl/ONNXToKrnlCommon.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
@ -148,58 +147,30 @@ Value insertAllocAndDeallocForPooling(ConversionPatternRewriter &rewriter,
|
|||
}
|
||||
}
|
||||
|
||||
Value zero, one;
|
||||
if (ceilMode) {
|
||||
zero = rewriter.create<ConstantOp>(
|
||||
loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
||||
}
|
||||
one = rewriter.create<ConstantOp>(
|
||||
loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
|
||||
|
||||
// Obtain an affine map to compute the output dimension.
|
||||
AffineMap dimMap = getConvDimMap(rewriter, ceilMode);
|
||||
for (int i = kernelOffset; i < resultShape.size(); ++i) {
|
||||
if (resultShape[i] < 0) {
|
||||
// dim =
|
||||
// let numerator = (input + pad - (kernel - 1) * dilation - 1)
|
||||
// in let denominator = stride
|
||||
// in
|
||||
// if (ceilMode)
|
||||
// ceil(numerator / denominator) + 1
|
||||
// else
|
||||
// floor(numerator / denominator) + 1
|
||||
int spatialIndex = i - kernelOffset;
|
||||
// Prepare arguments for the affine map.
|
||||
SmallVector<Value, 4> dimArgs;
|
||||
dimArgs.emplace_back(rewriter.create<DimOp>(loc, inputOperand, i));
|
||||
dimArgs.emplace_back(emitConstantOp(
|
||||
rewriter, loc, rewriter.getIndexType(), kernelShape[spatialIndex]));
|
||||
dimArgs.emplace_back(
|
||||
emitConstantOp(rewriter, loc, rewriter.getIndexType(),
|
||||
(pads[spatialIndex] + pads[spatialIndex + kernelRank])));
|
||||
dimArgs.emplace_back(emitConstantOp(
|
||||
rewriter, loc, rewriter.getIndexType(), strides[spatialIndex]));
|
||||
dimArgs.emplace_back(
|
||||
emitConstantOp(rewriter, loc, rewriter.getIndexType(),
|
||||
dilations.empty() ? 1 : dilations[spatialIndex]));
|
||||
|
||||
// numerator = (input + pad - (kernel - 1) * dilation - 1)
|
||||
int64_t dilation = dilations.empty() ? 1 : dilations[spatialIndex];
|
||||
int64_t padKernelDilation =
|
||||
(pads[spatialIndex] + pads[spatialIndex + kernelRank]) -
|
||||
(kernelShape[spatialIndex] - 1) * dilation - 1;
|
||||
auto padKernelDilationVal = emitConstantOp(
|
||||
rewriter, loc, rewriter.getIntegerType(64), padKernelDilation);
|
||||
auto inputDim = rewriter.create<DimOp>(loc, inputOperand, i);
|
||||
auto inputDimVal = rewriter.create<IndexCastOp>(
|
||||
loc, inputDim, rewriter.getIntegerType(64));
|
||||
auto numeratorVal =
|
||||
rewriter.create<AddIOp>(loc, inputDimVal, padKernelDilationVal);
|
||||
// denominator
|
||||
auto denominatorVal = emitConstantOp(
|
||||
rewriter, loc, rewriter.getIntegerType(64), strides[spatialIndex]);
|
||||
|
||||
// numerator / denominator
|
||||
// Apply the affine map.
|
||||
Value dimVal =
|
||||
rewriter.create<SignedDivIOp>(loc, numeratorVal, denominatorVal);
|
||||
rewriter.create<AffineApplyOp>(loc, dimMap, ValueRange(dimArgs));
|
||||
|
||||
if (ceilMode) {
|
||||
auto remainder =
|
||||
rewriter.create<SignedRemIOp>(loc, numeratorVal, denominatorVal);
|
||||
auto isZero =
|
||||
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, remainder, zero);
|
||||
auto dimPlusOne = rewriter.create<AddIOp>(loc, dimVal, one);
|
||||
dimVal = rewriter.create<SelectOp>(loc, isZero, dimVal, dimPlusOne);
|
||||
}
|
||||
|
||||
dimVal = rewriter.create<AddIOp>(loc, dimVal, one);
|
||||
allocOperands.emplace_back(
|
||||
rewriter.create<IndexCastOp>(loc, dimVal, rewriter.getIndexType()));
|
||||
allocOperands.emplace_back(dimVal);
|
||||
}
|
||||
}
|
||||
alloc = rewriter.create<AllocOp>(loc, memRefType, allocOperands);
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include "src/Dialect/Krnl/KrnlHelper.hpp"
|
||||
#include "src/Dialect/Krnl/KrnlOps.hpp"
|
||||
#include "src/Dialect/ONNX/ONNXOps.hpp"
|
||||
#include "src/Dialect/ONNX/ONNXOpsHelper.hpp"
|
||||
#include "src/Pass/Passes.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
|
|
@ -6,7 +6,9 @@ add_public_tablegen_target(OMONNXOpsIncGen)
|
|||
|
||||
add_library(OMONNXOps
|
||||
ONNXOps.cpp
|
||||
ONNXOps.hpp)
|
||||
ONNXOps.hpp
|
||||
ONNXOpsHelper.cpp
|
||||
ONNXOpsHelper.hpp)
|
||||
target_include_directories(OMONNXOps
|
||||
PRIVATE
|
||||
${ONNX_MLIR_SRC_ROOT}
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "llvm/ADT/SmallBitVector.h"
|
||||
|
||||
#include "ONNXOps.hpp"
|
||||
#include "ONNXOpsHelper.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::OpTrait::util;
|
||||
|
@ -48,6 +49,30 @@ static mlir::ONNXConstantOp getONNXConstantOp(Value value) {
|
|||
return dyn_cast_or_null<mlir::ONNXConstantOp>(value.getDefiningOp());
|
||||
}
|
||||
|
||||
// This method substitutes any uses of dimensions and symbols (e.g.
|
||||
// dim#0 with dimReplacements[0]) in an affine map, simplifies the modified
|
||||
// affine map, and returns an integer constant.
|
||||
int64_t AffineMapIntConstant(Builder &builder, AffineMap map,
|
||||
ArrayRef<int64_t> dimReplacements, ArrayRef<int64_t> symReplacements,
|
||||
unsigned numResultDims, unsigned numResultSyms) {
|
||||
// Prepare affine expressions.
|
||||
SmallVector<AffineExpr, 4> dimExprs, symExprs;
|
||||
for (int64_t dim : dimReplacements) {
|
||||
AffineExpr exp = builder.getAffineConstantExpr(dim);
|
||||
dimExprs.emplace_back(exp);
|
||||
}
|
||||
for (int64_t sym : symReplacements) {
|
||||
AffineExpr exp = builder.getAffineConstantExpr(sym);
|
||||
symExprs.emplace_back(exp);
|
||||
}
|
||||
// Replace all the affine map's arguments with real values and evaluate the
|
||||
// map.
|
||||
AffineMap replacedDimMap = map.replaceDimsAndSymbols(
|
||||
dimExprs, symExprs, numResultDims, numResultSyms);
|
||||
AffineMap simplifiedMap = simplifyAffineMap(replacedDimMap);
|
||||
return simplifiedMap.getSingleConstantResult();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Get reduction type
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -267,33 +292,27 @@ static void processConvTypeParams(T *op, Value inputOperand) {
|
|||
// Compute spatial dimensions given dilations, strides, pads, and ceil mode.
|
||||
//
|
||||
static void insertConvSpatialDim(SmallVector<int64_t, 4> *outputDims,
|
||||
ArrayRef<int64_t> xShape, Optional<ArrayAttr> kernelShape,
|
||||
Builder &builder, ArrayRef<int64_t> xShape, Optional<ArrayAttr> kernelShape,
|
||||
Optional<ArrayAttr> padsOpt, Optional<ArrayAttr> stridesOpt,
|
||||
Optional<ArrayAttr> dilationsOpt = llvm::None, bool ceilMode = false) {
|
||||
auto xRank = xShape.size();
|
||||
auto spatialRank = ArrayAttrSize(kernelShape);
|
||||
auto spatialOffset = xRank - spatialRank;
|
||||
auto spatialOffset = xShape.size() - spatialRank;
|
||||
|
||||
int64_t dilationVal = 1;
|
||||
// Get an affine map to compute the output dimension.
|
||||
AffineMap dimMap = getConvDimMap(builder, ceilMode);
|
||||
for (int i = 0; i < spatialRank; ++i) {
|
||||
int64_t res = -1;
|
||||
if (xShape[spatialOffset + i] != -1) {
|
||||
auto inputSize = xShape[spatialOffset + i];
|
||||
auto sumOfPads =
|
||||
ArrayAttrIntVal(padsOpt, i) + ArrayAttrIntVal(padsOpt, spatialRank + i);
|
||||
auto kernelSize = ArrayAttrIntVal(kernelShape, i);
|
||||
auto sumOfPads = ArrayAttrIntVal(padsOpt, i) +
|
||||
ArrayAttrIntVal(padsOpt, spatialRank + i);
|
||||
auto strideVal = ArrayAttrIntVal(stridesOpt, i);
|
||||
int64_t dilationVal = 1;
|
||||
if (dilationsOpt.hasValue())
|
||||
dilationVal = ArrayAttrIntVal(dilationsOpt, i);
|
||||
auto strideVal = ArrayAttrIntVal(stridesOpt, i);
|
||||
// Number of useful values: input plus pad - effective size of kernel (see
|
||||
// processConvTypeParams comments to see how this value is derived).
|
||||
double numerator =
|
||||
inputSize + sumOfPads - ((kernelSize - 1) * dilationVal + 1);
|
||||
// Useful number is divided by the strides.
|
||||
double denominator = strideVal;
|
||||
int64_t res;
|
||||
if (ceilMode) {
|
||||
res = ceil(numerator / denominator) + 1;
|
||||
} else {
|
||||
res = floor(numerator / denominator) + 1;
|
||||
res = AffineMapIntConstant(builder, dimMap, {inputSize},
|
||||
{kernelSize, sumOfPads, strideVal, dilationVal}, 1, 4);
|
||||
}
|
||||
outputDims->emplace_back(res);
|
||||
}
|
||||
|
@ -1343,8 +1362,8 @@ bool ONNXConvOp::inferShapes() {
|
|||
// Insert number of filters being applied (number of output channels).
|
||||
outputDims.emplace_back(weightShape[0]);
|
||||
// Compute and insert spatial dims.
|
||||
insertConvSpatialDim(
|
||||
&outputDims, xShape, kernelShape, padsOpt, stridesOpt, dilationsOpt);
|
||||
insertConvSpatialDim(&outputDims, builder, xShape, kernelShape, padsOpt,
|
||||
stridesOpt, dilationsOpt);
|
||||
|
||||
getResult().setType(RankedTensorType::get(outputDims, xTy.getElementType()));
|
||||
return true;
|
||||
|
@ -1365,6 +1384,8 @@ bool ONNXAveragePoolOp::inferShapes() {
|
|||
return false;
|
||||
}
|
||||
|
||||
auto builder = mlir::Builder(getContext());
|
||||
|
||||
// Get shape of input.
|
||||
auto xTy = X().getType().cast<RankedTensorType>();
|
||||
auto xShape = xTy.getShape();
|
||||
|
@ -1390,8 +1411,8 @@ bool ONNXAveragePoolOp::inferShapes() {
|
|||
outputDims.emplace_back(xShape[0]);
|
||||
outputDims.emplace_back(xShape[1]);
|
||||
// Compute and insert spatial dims.
|
||||
insertConvSpatialDim(&outputDims, xShape, kernelShape, padsOpt, stridesOpt,
|
||||
llvm::None, ceilMode);
|
||||
insertConvSpatialDim(&outputDims, builder, xShape, kernelShape, padsOpt,
|
||||
stridesOpt, llvm::None, ceilMode);
|
||||
|
||||
getResult().setType(RankedTensorType::get(outputDims, xTy.getElementType()));
|
||||
return true;
|
||||
|
@ -1412,6 +1433,8 @@ bool ONNXMaxPoolSingleOutOp::inferShapes() {
|
|||
return false;
|
||||
}
|
||||
|
||||
auto builder = mlir::Builder(getContext());
|
||||
|
||||
// Get shape of input.
|
||||
auto xTy = X().getType().cast<RankedTensorType>();
|
||||
auto xShape = xTy.getShape();
|
||||
|
@ -1441,8 +1464,8 @@ bool ONNXMaxPoolSingleOutOp::inferShapes() {
|
|||
outputDims.emplace_back(xShape[0]);
|
||||
outputDims.emplace_back(xShape[1]);
|
||||
// Compute and insert spatial dims.
|
||||
insertConvSpatialDim(&outputDims, xShape, kernelShape, padsOpt, stridesOpt,
|
||||
dilationsOpt, ceilMode);
|
||||
insertConvSpatialDim(&outputDims, builder, xShape, kernelShape, padsOpt,
|
||||
stridesOpt, dilationsOpt, ceilMode);
|
||||
|
||||
getResult().setType(RankedTensorType::get(outputDims, xTy.getElementType()));
|
||||
return true;
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
//===------- ONNXOpsHelper.cpp - Helper functions for ONNX dialects -------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
// =============================================================================
|
||||
//
|
||||
// This file contains helper functions for lowering ONNX ops to Krnl Dialect.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "ONNXOpsHelper.hpp"
|
||||
|
||||
// Identity affine
|
||||
using namespace mlir;
|
||||
AffineMap getIdentityDimMap(Builder &builder) {
|
||||
return AffineMap::get(1, 0, {builder.getAffineDimExpr(0)});
|
||||
}
|
||||
|
||||
// Pool/conv affine
|
||||
// dim =
|
||||
// let numerator = (input + pad - (kernel - 1) * dilation - 1)
|
||||
// in let denominator = stride
|
||||
// in
|
||||
// if (ceilMode)
|
||||
// ceil(numerator / denominator) + 1
|
||||
// else
|
||||
// floor(numerator / denominator) + 1
|
||||
AffineMap getConvDimMap(Builder &builder, bool ceilMode) {
|
||||
AffineExpr input = builder.getAffineDimExpr(0);
|
||||
AffineExpr kernel = builder.getAffineSymbolExpr(0);
|
||||
AffineExpr pad = builder.getAffineSymbolExpr(1);
|
||||
AffineExpr stride = builder.getAffineSymbolExpr(2);
|
||||
AffineExpr dilation = builder.getAffineSymbolExpr(3);
|
||||
|
||||
AffineExpr dimExp;
|
||||
if (ceilMode)
|
||||
dimExp = (input + pad - (kernel - 1) * dilation - 1).ceilDiv(stride) + 1;
|
||||
else
|
||||
dimExp = (input + pad - (kernel - 1) * dilation - 1).floorDiv(stride) + 1;
|
||||
|
||||
return AffineMap::get(1, 4, {dimExp});
|
||||
}
|
|
@ -0,0 +1,33 @@
|
|||
//===------- ONNXOpsHelper.hpp - Helper functions for ONNX dialects -------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
// =============================================================================
|
||||
//
|
||||
// This file contains helper functions for lowering ONNX ops to Krnl Dialect.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
// Identity affine map:
|
||||
// #map = affine_map<(d0)[] -> d0>
|
||||
AffineMap getIdentityDimMap(Builder &builder);
|
||||
|
||||
// Pool/conv affine map:
|
||||
// #map0 = affine_map<(d0)[s0, s1, s2, s3]
|
||||
// -> (d0 + s1 - (s0 - 1) * s3 - 1) floordiv s2 + 1>
|
||||
// In the case of `ceilMode = true`:
|
||||
// #map0 = affine_map<(d0)[s0, s1, s2, s3]
|
||||
// -> (d0 + s1 - (s0 - 1) * s3 - 1) ceildiv s2 + 1>
|
||||
// where:
|
||||
// - d0: input dim
|
||||
// - s0: kernel
|
||||
// - s1: pad
|
||||
// - s2: stride
|
||||
// - s3: dilation
|
||||
AffineMap getConvDimMap(Builder &builder, bool ceilMode);
|
|
@ -1727,6 +1727,23 @@ func @test_pool_general_computation(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf
|
|||
|
||||
// -----
|
||||
|
||||
func @test_pool_unknown_dimensions(%arg0 : tensor<1x3x?x32xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x?x32xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-DAG: #[[AFFINE_MAP:.+]] = affine_map<(d0)[s0, s1, s2, s3] -> ((d0 + s1 - (s0 - 1) * s3 - 1) floordiv s2 + 1)>
|
||||
// CHECK-LABEL: test_pool_unknown_dimensions
|
||||
// CHECK: [[DIM:%.+]] = dim %arg0, 2 : memref<1x3x?x32xf32>
|
||||
// CHECK: [[KERNEL:%.+]] = constant 2 : index
|
||||
// CHECK: [[PAD:%.+]] = constant 0 : index
|
||||
// CHECK: [[STRIDE:%.+]] = constant 1 : index
|
||||
// CHECK: [[DILATION:%.+]] = constant 1 : index
|
||||
// CHECK: [[AFFINE_APPLY:%.+]] = affine.apply #[[AFFINE_MAP]]([[DIM]]){{.*}}[[KERNEL]], [[PAD]], [[STRIDE]], [[DILATION]]{{.*}}
|
||||
// CHECK: [[RES:%.+]] = alloc([[AFFINE_APPLY]]) : memref<1x3x?x31xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @test_averagepool_identity_value(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
|
Loading…
Reference in New Issue