emit SGIR based on onnx model, following the toy/Ch2 example (#345)

* emit SGIR based on onnx model, following the toy/Ch2 example

* fix 1) code style 2) multiple output of a node

* Update sgir.cpp
This commit is contained in:
TONG CHEN 2019-10-06 22:32:10 -04:00 committed by Doru Bercea
parent 63427030ca
commit 50ac6e7bce
2 changed files with 180 additions and 28 deletions

View File

@ -6,6 +6,8 @@
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include <regex>
#include <tuple>
#include <numeric> #include <numeric>
#include "mlir/Analysis/Verifier.h" #include "mlir/Analysis/Verifier.h"
@ -18,51 +20,192 @@
#include "mlir/IR/Module.h" #include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h" #include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h" #include "mlir/IR/Types.h"
#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/raw_ostream.h" #include "llvm/Support/raw_ostream.h"
#include "sgir.hpp" #include "sgir.hpp"
using llvm::cast; namespace onnf {
using llvm::dyn_cast;
using llvm::isa;
using llvm::ScopedHashTableScope;
using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;
namespace { namespace {
struct OnnxOnnfSymbolMapping {
/*!
* Get MLIR tensor by onnx tensor name.
* @param name onnx tensor name.
* @return onnf tensor corresponding to `name`.
*/
mlir::Value* GetTensorByOnnxName(std::string name) {
return onnx_name2onnf_tensor.at(legalize_name(name));
}
/*!
* Add a new mapping from onnx tensor name to MLIR symbol.
* @param name onnx tensor name.
* @param tensor MLIR Value* pointer.
*/
void AddMapping(std::string name, mlir::Value* tensor) {
onnx_name2onnf_tensor.emplace(legalize_name(name), tensor);
}
bool ContainKey(std::string name) {
return onnx_name2onnf_tensor.count(name) != 0;
}
private:
/*!
* mapping from onnx tensor names to MLIR tensor.
*/
std::map<std::string, mlir::Value*> onnx_name2onnf_tensor;
};
class SGIRGenImpl { class SGIRGenImpl {
public : public :
SGIRGenImpl(mlir::MLIRContext &context) SGIRGenImpl(mlir::MLIRContext &context)
: context(context), builder(&context) {} : context_(context), builder_(&context) {
module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context));
}
mlir::ModuleOp mlirGen() { mlir::ModuleOp ImportModel(onnx::ModelProto model) {
theModule = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); ImportGraph(model.graph());
return theModule; return module_;
} }
private: private:
mlir::MLIRContext &context; mlir::MLIRContext &context_;
mlir::ModuleOp theModule; mlir::ModuleOp module_;
mlir::OpBuilder builder; mlir::OpBuilder builder_;
// mapping between string name and symbol
OnnxOnnfSymbolMapping sgir_symbols_;
} ; mlir::Location UnknownLoc() {
return mlir::UnknownLoc::get(&context_);
}
mlir::Type TypeConvert(onnx::TensorProto_DataType intype) {
return builder_.getF32Type();
}
void ImportInputTensor(onnx::ValueInfoProto& input) {
std::vector<int64_t> dims;
auto shape_proto = input.type().tensor_type().shape();
auto input_tensor_legalized_name = legalize_name(input.name());
for (int i = 0; i < shape_proto.dim_size(); i++) {
if (shape_proto.dim()[i].dim_value()) {
int dim_numeric_size = shape_proto.dim()[i].dim_value();
if (dim_numeric_size > 0) {
dims.push_back(dim_numeric_size);
}else { // If dim_value < 0, then dim is parametric.
//TODO Verify the unknown dim size in MLIR
dims.push_back(-1);
}
} else {
//TODO How to represent variable length
dims.push_back(-1);
}
}
if (!sgir_symbols_.ContainKey(input_tensor_legalized_name)) {
mlir::Type elementType = TypeConvert(input.type().tensor_type().elem_type());
llvm::ArrayRef<int64_t> llvmdimsAR(dims.data(), dims.size());
auto dataType = builder_.getTensorType(llvmdimsAR, elementType);
mlir::OperationState result(UnknownLoc(), "sgir.input "+input_tensor_legalized_name);
result.addTypes(dataType);
auto op = builder_.createOperation(result);
auto value = op->getResult(0);
sgir_symbols_.AddMapping(input_tensor_legalized_name, value);
} else {
//TODO Should not happen
}
}
void ImportNode(onnx::NodeProto node) {
std::vector<mlir::Value*> inputs;
for (auto item : node.input()) {
if (sgir_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(sgir_symbols_.GetTensorByOnnxName(item));
}
}
mlir::OperationState result(UnknownLoc(), "SGIR."+node.op_type());
for (auto item : node.output()) {
result.addTypes(builder_.getTensorType(builder_.getF32Type()));
}
result.addOperands(inputs);
auto op = builder_.createOperation(result);
for (int i=0 ; i< node.output().size(); i++) {
auto r = builder_.createOperation(result)->getResult(i);
sgir_symbols_.AddMapping(legalize_name(node.output()[i]), r);
}
//TODO more info from node: attributes
}
void ImportOutputTensor(onnx::ValueInfoProto& output) {
if(sgir_symbols_.ContainKey(legalize_name(output.name()))) {
mlir::OperationState result(UnknownLoc(), "sgir.output "+output.name());
result.addTypes(builder_.getTensorType(builder_.getF32Type()));
result.addOperands(sgir_symbols_.GetTensorByOnnxName(output.name()));
builder_.createOperation(result);
} else {
//TODO: Why not in the symbol table? something is wrong
}
}
void ImportGraph(onnx::GraphProto graph) {
//create a function for the graph
//TODO:
// * get name and type for the function.
// * maintain a list of the defined graph
llvm::SmallVector<mlir::Type, 4> ret_types;
llvm::SmallVector<mlir::Type, 4> arg_types;
auto func_type = builder_.getFunctionType(arg_types, ret_types);
auto llvmfunction = mlir::FuncOp::create(UnknownLoc(),
graph.name(), func_type, /* attrs = */ {});
auto &entryBlock = *llvmfunction.addEntryBlock();
builder_.setInsertionPointToStart(&entryBlock);
module_.push_back(llvmfunction);
//TODO: import the initializer
//
//import the input tensors
for (auto input : graph.input()) {
ImportInputTensor(input);
}
//import nodes in the graph
auto node = graph.node();
for (auto item: node) {
ImportNode(item);
}
//import the output tensors
for (auto output : graph.output()) {
ImportOutputTensor(output);
}
}
} ; //SGIRGenImpl class
} //namespace } //namespace
} //namespace onnf
namespace onnf { namespace onnf {
int SGIRTest() { /*!
* Generate SGIR with MLIR for a onnx model
* @param model onnx model.
* @return module mlir module generated for the onnx model
*/
mlir::OwningModuleRef SGIRImportModel(onnx::ModelProto model) {
mlir::MLIRContext context; mlir::MLIRContext context;
SGIRGenImpl mySGIRGen(context);
auto module = mySGIRGen.ImportModel(model);
module.dump();
mlir::OwningModuleRef module = SGIRGenImpl(context).mlirGen(); return module;
if (!module)
return 1;
module->dump();
return 0;
} }
} //namespace onnf } //namespace onnf

View File

@ -8,7 +8,15 @@
#pragma once #pragma once
#include <fstream>
#include <functional>
#include <map>
#include <memory> #include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "onnx/onnx_pb.h"
namespace mlir { namespace mlir {
class MLIRContext; class MLIRContext;
@ -17,10 +25,11 @@ class OwningModuleRef;
namespace onnf { namespace onnf {
/*! /*!
* Test dummy * Import an ONNX Model into SGIR
* @return status, 0 for success, otherwise failure * @param model onnx model.
**/ * @return MLIR::module generated for the ONNX model
int SGIRTest(); */
mlir::OwningModuleRef SGIRImportModel(onnx::ModelProto model);
} //namespace onnf } //namespace onnf