Lower ONNXConstantOfShapeOp to Krnl dialect (#296)
* Lower ONNXConstantOfShapeOp to Krnl dialect * Change a variable name * Add comments to lit tests Co-authored-by: Alexandre Eichenberger <alexe@us.ibm.com>
This commit is contained in:
parent
3a5aa7ee31
commit
66074da3ac
|
@ -20,6 +20,7 @@ add_library(OMONNXToKrnl
|
|||
Tensor/Squeeze.cpp
|
||||
Tensor/Unsqueeze.cpp
|
||||
Tensor/Constant.cpp
|
||||
Tensor/ConstantOfShape.cpp
|
||||
Tensor/Concat.cpp
|
||||
Tensor/Split.cpp
|
||||
Tensor/Gather.cpp
|
||||
|
|
|
@ -98,6 +98,7 @@ void FrontendToKrnlLoweringPass::runOnOperation() {
|
|||
populateLoweringONNXTransposeOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXGatherOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXIdentityOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXConstantOfShapeOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXConstantOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXConcatOpPattern(patterns, &getContext());
|
||||
populateLoweringONNXSqueezeOpPattern(patterns, &getContext());
|
||||
|
|
|
@ -238,6 +238,9 @@ void populateLoweringONNXReshapeOpPattern(
|
|||
void populateLoweringONNXIdentityOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXConstantOfShapeOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXConstantOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
|
|
|
@ -0,0 +1,100 @@
|
|||
//===------------ ConstantOfShape.cpp - Lowering ConstantOfShape Op -------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
// =============================================================================
|
||||
//
|
||||
// This file lowers the ONNX ConstantOfShape Operator to Krnl dialect.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/Conversion/ONNXToKrnl/ONNXToKrnlCommon.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXConstantOfShapeOpLowering : public ConversionPattern {
|
||||
ONNXConstantOfShapeOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(
|
||||
mlir::ONNXConstantOfShapeOp::getOperationName(), 1, ctx) {}
|
||||
|
||||
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const final {
|
||||
auto loc = op->getLoc();
|
||||
ONNXConstantOfShapeOpAdaptor operandAdaptor(operands);
|
||||
|
||||
auto valueAttr = llvm::cast<ONNXConstantOfShapeOp>(op)
|
||||
.value()
|
||||
.getValue()
|
||||
.cast<DenseElementsAttr>();
|
||||
|
||||
auto memRefType = convertToMemRefType(*op->result_type_begin());
|
||||
auto elementType = memRefType.getElementType();
|
||||
size_t rank = memRefType.cast<ShapedType>().getRank();
|
||||
|
||||
// Allocate memory for the output.
|
||||
Value alloc;
|
||||
bool insertDealloc = checkInsertDealloc(op);
|
||||
if (hasAllConstantDimensions(memRefType))
|
||||
alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc);
|
||||
else {
|
||||
SmallVector<Value, 2> allocOperands;
|
||||
// Load dimensions from the input.
|
||||
for (decltype(rank) i = 0; i < rank; ++i) {
|
||||
auto index = emitConstantOp(rewriter, loc, rewriter.getIndexType(), i);
|
||||
auto dim =
|
||||
rewriter.create<AffineLoadOp>(loc, operandAdaptor.input(), index);
|
||||
auto dimIndex =
|
||||
rewriter.create<IndexCastOp>(loc, rewriter.getIndexType(), dim);
|
||||
allocOperands.emplace_back(dimIndex);
|
||||
}
|
||||
// Allocate memory.
|
||||
alloc = rewriter.create<AllocOp>(loc, memRefType, allocOperands);
|
||||
// Insert deallocation if needed.
|
||||
if (insertDealloc) {
|
||||
Block *parentBlock = alloc.getDefiningOp()->getBlock();
|
||||
DeallocOp dealloc = rewriter.create<DeallocOp>(loc, alloc);
|
||||
dealloc.getOperation()->moveBefore(&parentBlock->back());
|
||||
}
|
||||
}
|
||||
|
||||
// Get the constant value from the attribute 'value'.
|
||||
Value constantVal;
|
||||
if (elementType.isa<IntegerType>()) {
|
||||
auto valueIt = valueAttr.getValues<IntegerAttr>().begin();
|
||||
auto valueInt = (*valueIt++).cast<IntegerAttr>().getInt();
|
||||
constantVal = emitConstantOp(rewriter, loc, elementType, valueInt);
|
||||
} else if (elementType.isa<FloatType>()) {
|
||||
auto valueIt = valueAttr.getValues<FloatAttr>().begin();
|
||||
auto valueFloat = (*valueIt++).cast<FloatAttr>().getValueAsDouble();
|
||||
constantVal = emitConstantOp(rewriter, loc, elementType, valueFloat);
|
||||
} else {
|
||||
llvm_unreachable("unsupported element type");
|
||||
}
|
||||
|
||||
SmallVector<Value, 4> loopIVs;
|
||||
// Create a Krnl iterate if the output is not a scalar tensor.
|
||||
if (!hasAllScalarValues({alloc})) {
|
||||
BuildKrnlLoop loops(rewriter, loc, rank);
|
||||
loops.createDefineAndIterateOp(alloc);
|
||||
Block *iterationBlock = loops.getIterateBlock();
|
||||
// Get IVs.
|
||||
for (auto arg : iterationBlock->getArguments())
|
||||
loopIVs.push_back(arg);
|
||||
// Insert instructions inside the KernelIterateOp body.
|
||||
rewriter.setInsertionPointToStart(iterationBlock);
|
||||
}
|
||||
|
||||
// Store the constant value to the output.
|
||||
rewriter.create<AffineStoreOp>(loc, constantVal, alloc, loopIVs);
|
||||
|
||||
// Replace this operation with the generated alloc.
|
||||
rewriter.replaceOp(op, alloc);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
void populateLoweringONNXConstantOfShapeOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
||||
patterns.insert<ONNXConstantOfShapeOpLowering>(ctx);
|
||||
}
|
|
@ -420,6 +420,18 @@ test_to_enable = [
|
|||
"test_split_variable_parts_2d_cpu",
|
||||
"test_split_variable_parts_default_axis_cpu",
|
||||
|
||||
# ConstantOfShape
|
||||
"test_constantofshape_float_ones_cpu",
|
||||
# Error:
|
||||
# Items are not equal:
|
||||
# ACTUAL: dtype('int32')
|
||||
# DESIRED: dtype('uint8')
|
||||
# In this test, 'int32' was specified for value attribute as in
|
||||
# onnx/onnx/backend/test/case/node/constantofshape.py
|
||||
# and onnx-mlir correctly imported and converted the model.
|
||||
# It is unknown why 'uint8' came from.
|
||||
#"test_constantofshape_int_zeros_cpu",
|
||||
|
||||
# Model
|
||||
"test_resnet50_cpu",
|
||||
"test_vgg19_cpu",
|
||||
|
|
|
@ -2170,3 +2170,83 @@ func @test_gather_axis1(%arg0 : tensor<3x3xf32>) -> tensor<1x3x2xf32> {
|
|||
// CHECK: [[DATA:%.+]] = load %arg0{{.}}[[ARG1]], [[AFFINE2]]{{.}} : memref<3x3xf32>
|
||||
// CHECK: affine.store [[DATA]], [[ALLOC]]{{.}}[[ARG1]], [[ARG2]], [[ARG3]]{{.}} : memref<1x3x2xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// Check the lowering of ConstantOfShape when:
|
||||
// - No value attribute.
|
||||
// - The input is an empty tensor.
|
||||
// Expected emitted code:
|
||||
// - No need a Krnl iterate.
|
||||
// - The output is a scalar tensor.
|
||||
func @test_constant_of_shape_empty_tensor(%arg0 : tensor<0xi64>) -> tensor<*xf32> {
|
||||
%0 = "onnx.ConstantOfShape"(%arg0) : (tensor<0xi64>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-LABEL: test_constant_of_shape_empty_tensor
|
||||
// CHECK: [[RES:%.+]] = alloc() : memref<f32>
|
||||
// CHECK: [[CST_VALUE:%.+]] = constant 0.000000e+00 : f32
|
||||
// CHECK: affine.store [[CST_VALUE]], [[RES]][] : memref<f32>
|
||||
// CHECK: return [[RES]] : memref<f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// Check the lowering of ConstantOfShape when:
|
||||
// - The input is not a constant tensor.
|
||||
// Expected emitted code:
|
||||
// - Emit code to compute output dimensions from the input's dimensions.
|
||||
// - Krnl iterates are used to set values to the output.
|
||||
func @test_constant_of_shape_dynamic_dims(%arg0 : tensor<3xi64>) -> tensor<*xf32> {
|
||||
%0 = "onnx.ConstantOfShape"(%arg0) {value = dense<[1.0]> : tensor<1xf32>} : (tensor<3xi64>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-LABEL: test_constant_of_shape_dynamic_dims
|
||||
// CHECK: [[CST0:%.+]] = constant 0 : index
|
||||
// CHECK: [[LOAD_DIM_0:%.+]] = affine.load %arg0{{\[}}[[CST0]]{{\]}} : memref<3xi64>
|
||||
// CHECK: [[DIM_0:%.+]] = index_cast [[LOAD_DIM_0]] : i64 to index
|
||||
// CHECK: [[CST1:%.+]] = constant 1 : index
|
||||
// CHECK: [[LOAD_DIM_1:%.+]] = affine.load %arg0{{\[}}[[CST1]]{{\]}} : memref<3xi64>
|
||||
// CHECK: [[DIM_1:%.+]] = index_cast [[LOAD_DIM_1]] : i64 to index
|
||||
// CHECK: [[CST2:%.+]] = constant 2 : index
|
||||
// CHECK: [[LOAD_DIM_2:%.+]] = affine.load %arg0{{\[}}[[CST2]]{{\]}} : memref<3xi64>
|
||||
// CHECK: [[DIM_2:%.+]] = index_cast [[LOAD_DIM_2]] : i64 to index
|
||||
// CHECK: [[RES:%.+]] = alloc([[DIM_0]], [[DIM_1]], [[DIM_2]]) : memref<?x?x?xf32>
|
||||
|
||||
// CHECK: [[CST_VALUE:%.+]] = constant 1.000000e+00 : f32
|
||||
// CHECK: [[LOOP_DEF:%.+]]:3 = krnl.define_loops 3
|
||||
// CHECK: [[CST00:%.+]] = constant 0 : index
|
||||
// CHECK: [[RES_DIM_0:%.+]] = dim [[RES]], [[CST00]] : memref<?x?x?xf32>
|
||||
// CHECK: [[CST11:%.+]] = constant 1 : index
|
||||
// CHECK: [[RES_DIM_1:%.+]] = dim [[RES]], [[CST11]] : memref<?x?x?xf32>
|
||||
// CHECK: [[CST22:%.+]] = constant 2 : index
|
||||
// CHECK: [[RES_DIM_2:%.+]] = dim [[RES]], [[CST22]] : memref<?x?x?xf32>
|
||||
// CHECK: krnl.iterate([[LOOP_DEF]]#0, [[LOOP_DEF]]#1, [[LOOP_DEF]]#2) with ([[LOOP_DEF]]#0 -> %arg1 = 0 to [[RES_DIM_0]], [[LOOP_DEF]]#1 -> %arg2 = 0 to [[RES_DIM_1]], [[LOOP_DEF]]#2 -> %arg3 = 0 to [[RES_DIM_2]]) {
|
||||
// CHECK: affine.store [[CST_VALUE]], [[RES]][%arg1, %arg2, %arg3] : memref<?x?x?xf32>
|
||||
// CHECK: }
|
||||
// CHECK: return [[RES]] : memref<?x?x?xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// Check the lowering of ConstantOfShape when:
|
||||
// - The input is a constant tensor.
|
||||
// Expected emitted code:
|
||||
// - Output dimensions are computed during compilation time.
|
||||
// - Krnl iterates are used to set values to the output.
|
||||
func @test_constant_of_shape_static_dims() -> tensor<*xf32> {
|
||||
%0 = "onnx.Constant"() {value = dense<[3, 4, 5]> : tensor<3xi64> } : () -> tensor<3xi64>
|
||||
%1 = "onnx.ConstantOfShape"(%0) {value = dense<[1.0]> : tensor<1xf32>} : (tensor<3xi64>) -> tensor<*xf32>
|
||||
"std.return"(%1) : (tensor<*xf32>) -> ()
|
||||
|
||||
// CHECK-LABEL: test_constant_of_shape_static_dims
|
||||
// CHECK: [[RES:%.+]] = alloc() : memref<3x4x5xf32>
|
||||
// CHECK: [[GLOBAL_CST:%.+]] = "krnl.global"() {name = "constant_0", shape = [3], value = dense<[3, 4, 5]> : tensor<3xi64>} : () -> memref<3xi64>
|
||||
// CHECK: [[CST_VALUE:%.+]] = constant 1.000000e+00 : f32
|
||||
// CHECK: [[LOOP_DEF:%.+]]:3 = krnl.define_loops 3
|
||||
// CHECK: krnl.iterate([[LOOP_DEF]]#0, [[LOOP_DEF]]#1, [[LOOP_DEF]]#2) with ([[LOOP_DEF]]#0 -> %arg0 = 0 to 3, [[LOOP_DEF]]#1 -> %arg1 = 0 to 4, [[LOOP_DEF]]#2 -> %arg2 = 0 to 5) {
|
||||
// CHECK: affine.store [[CST_VALUE]], [[RES]][%arg0, %arg1, %arg2] : memref<3x4x5xf32>
|
||||
// CHECK: }
|
||||
// CHECK: return [[RES]] : memref<3x4x5xf32>
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue