changes for mypipeline.onnx (#202)
* changes for mypipeline.onnx * format * rm MLOpBuildTable.inc * copy string without free * fix the memory issue * restore change for STRING * format Co-authored-by: Tian Jin <tjingrant@gmail.com>
This commit is contained in:
parent
100bfc81b4
commit
8848464a23
|
@ -128,6 +128,13 @@ private:
|
||||||
case onnx::AttributeProto::TENSOR:
|
case onnx::AttributeProto::TENSOR:
|
||||||
mlirAttr = onnxTensorProtoToDenseElmAttr(builder_, attr.t());
|
mlirAttr = onnxTensorProtoToDenseElmAttr(builder_, attr.t());
|
||||||
break;
|
break;
|
||||||
|
case onnx::AttributeProto::STRINGS: {
|
||||||
|
llvm::SmallVector<mlir::StringRef, 4> vectorStringRef;
|
||||||
|
for (const auto &item : attr.strings()) {
|
||||||
|
vectorStringRef.push_back(llvm::StringRef(item));
|
||||||
|
}
|
||||||
|
mlirAttr = builder_.getStrArrayAttr(llvm::makeArrayRef(vectorStringRef));
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
llvm_unreachable("datatype for attribute is not implemented");
|
llvm_unreachable("datatype for attribute is not implemented");
|
||||||
break;
|
break;
|
||||||
|
|
|
@ -1,42 +0,0 @@
|
||||||
//********************************************************
|
|
||||||
// Do not modify this file directly.
|
|
||||||
// This file is automatically generated via script.
|
|
||||||
// Details can be found in docs/readonnxdefs.md .
|
|
||||||
//********************************************************
|
|
||||||
|
|
||||||
if (opName == "ArrayFeatureExtractor")
|
|
||||||
buildOperation<mlir::MLONNXArrayFeatureExtractorOp>(node);
|
|
||||||
if (opName == "Binarizer")
|
|
||||||
buildOperation<mlir::MLONNXBinarizerOp>(node);
|
|
||||||
if (opName == "CastMap")
|
|
||||||
buildOperation<mlir::MLONNXCastMapOp>(node);
|
|
||||||
if (opName == "CategoryMapper")
|
|
||||||
buildOperation<mlir::MLONNXCategoryMapperOp>(node);
|
|
||||||
if (opName == "DictVectorizer")
|
|
||||||
buildOperation<mlir::MLONNXDictVectorizerOp>(node);
|
|
||||||
if (opName == "FeatureVectorizer")
|
|
||||||
buildOperation<mlir::MLONNXFeatureVectorizerOp>(node);
|
|
||||||
if (opName == "Imputer")
|
|
||||||
buildOperation<mlir::MLONNXImputerOp>(node);
|
|
||||||
if (opName == "LabelEncoder")
|
|
||||||
buildOperation<mlir::MLONNXLabelEncoderOp>(node);
|
|
||||||
if (opName == "LinearClassifier")
|
|
||||||
buildOperation<mlir::MLONNXLinearClassifierOp>(node);
|
|
||||||
if (opName == "LinearRegressor")
|
|
||||||
buildOperation<mlir::MLONNXLinearRegressorOp>(node);
|
|
||||||
if (opName == "Normalizer")
|
|
||||||
buildOperation<mlir::MLONNXNormalizerOp>(node);
|
|
||||||
if (opName == "OneHotEncoder")
|
|
||||||
buildOperation<mlir::MLONNXOneHotEncoderOp>(node);
|
|
||||||
if (opName == "SVMClassifier")
|
|
||||||
buildOperation<mlir::MLONNXSVMClassifierOp>(node);
|
|
||||||
if (opName == "SVMRegressor")
|
|
||||||
buildOperation<mlir::MLONNXSVMRegressorOp>(node);
|
|
||||||
if (opName == "Scaler")
|
|
||||||
buildOperation<mlir::MLONNXScalerOp>(node);
|
|
||||||
if (opName == "TreeEnsembleClassifier")
|
|
||||||
buildOperation<mlir::MLONNXTreeEnsembleClassifierOp>(node);
|
|
||||||
if (opName == "TreeEnsembleRegressor")
|
|
||||||
buildOperation<mlir::MLONNXTreeEnsembleRegressorOp>(node);
|
|
||||||
if (opName == "ZipMap")
|
|
||||||
buildOperation<mlir::MLONNXZipMapOp>(node);
|
|
|
@ -204,7 +204,7 @@ def ONNXArgMaxOp:ONNX_Op<"ArgMax",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {4};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -230,7 +230,7 @@ def ONNXArgMinOp:ONNX_Op<"ArgMin",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {4};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -944,7 +944,7 @@ def ONNXDequantizeLinearOp:ONNX_Op<"DequantizeLinear",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {21};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -1091,7 +1091,7 @@ def ONNXDynamicQuantizeLinearOp:ONNX_Op<"DynamicQuantizeLinear",
|
||||||
return 3;
|
return 3;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {1,-1,1};
|
return {1,7,1};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -2914,7 +2914,7 @@ def ONNXNonMaxSuppressionOp:ONNX_Op<"NonMaxSuppression",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {22};
|
return {4};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -2938,7 +2938,7 @@ def ONNXNonZeroOp:ONNX_Op<"NonZero",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {4};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5144,7 +5144,7 @@ def ONNXStringNormalizerOp:ONNX_Op<"StringNormalizer",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {20};
|
return {11};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5526,7 +5526,7 @@ def ONNXUniqueOp:ONNX_Op<"Unique",
|
||||||
return 4;
|
return 4;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {20,-1,-1,-1};
|
return {20,4,4,4};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5823,7 +5823,7 @@ def ONNXFeatureVectorizerOp:ONNX_Op<"FeatureVectorizer",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5929,7 +5929,7 @@ def ONNXLinearClassifierOp:ONNX_Op<"LinearClassifier",
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1,-1};
|
return {-1,7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5959,7 +5959,7 @@ def ONNXLinearRegressorOp:ONNX_Op<"LinearRegressor",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -5990,7 +5990,7 @@ def ONNXNormalizerOp:ONNX_Op<"Normalizer",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6021,7 +6021,7 @@ def ONNXOneHotEncoderOp:ONNX_Op<"OneHotEncoder",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6054,7 +6054,7 @@ def ONNXSVMClassifierOp:ONNX_Op<"SVMClassifier",
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1,-1};
|
return {-1,7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6083,7 +6083,7 @@ def ONNXSVMRegressorOp:ONNX_Op<"SVMRegressor",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6106,7 +6106,7 @@ def ONNXScalerOp:ONNX_Op<"Scaler",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6153,7 +6153,7 @@ def ONNXTreeEnsembleClassifierOp:ONNX_Op<"TreeEnsembleClassifier",
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1,-1};
|
return {-1,7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
@ -6200,7 +6200,7 @@ def ONNXTreeEnsembleRegressorOp:ONNX_Op<"TreeEnsembleRegressor",
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
static std::vector<int> getTypeMap() {
|
static std::vector<int> getTypeMap() {
|
||||||
return {-1};
|
return {7};
|
||||||
}
|
}
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
|
@ -427,7 +427,15 @@ def get_allowed_elem_types(schema, input):
|
||||||
# return allowed_types_str
|
# return allowed_types_str
|
||||||
# TODO: enable type constraints.
|
# TODO: enable type constraints.
|
||||||
if input.typeStr :
|
if input.typeStr :
|
||||||
tstr = input.typeStr
|
tstr = input.typeStr
|
||||||
|
structure, element = get_data_structure_element(tstr);
|
||||||
|
# In case the type is directly specified
|
||||||
|
if structure and element :
|
||||||
|
t = np_type_to_tblgen_attr_type(element)
|
||||||
|
if t == None :
|
||||||
|
return allowed_structure, None
|
||||||
|
else :
|
||||||
|
return structure, [t]
|
||||||
else :
|
else :
|
||||||
return None
|
return None
|
||||||
if schema.type_constraints:
|
if schema.type_constraints:
|
||||||
|
|
Loading…
Reference in New Issue