Update llvm version (#187)

* Update llvm version

* Update git hash for llvm-project

* Update option handling

* Update LLVM version

* Update tests

* Update git hash

* Update docs

* clang-format

* Fix operand adaptor

* Fix dim with constant

* Update LSTM.cpp

Co-authored-by: Tian Jin <tjingrant@gmail.com>
This commit is contained in:
Aaron Smith 2020-07-07 06:26:00 -07:00 committed by GitHub
parent 8b6cf7c661
commit 8e6642b2bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
26 changed files with 562 additions and 464 deletions

View File

@ -18,7 +18,7 @@ jobs:
git submodule update --init --recursive
# Use cached mlir installation if possible.
- restore_cache:
key: V13-LLVM-PROJECT-{{ arch }}
key: V15-LLVM-PROJECT-{{ arch }}
- run:
name: Install MLIR
command: |
@ -29,7 +29,7 @@ jobs:
source onnx-mlir/utils/install-mlir.sh
fi
- save_cache:
key: V13-LLVM-PROJECT-{{ arch }}
key: V15-LLVM-PROJECT-{{ arch }}
paths:
- llvm-project
- run:

View File

@ -165,6 +165,7 @@ find_mlir_lib(MLIRTransformUtils)
find_mlir_lib(MLIRSupport)
find_mlir_lib(MLIROpenMP)
find_mlir_lib(MLIROptLib)
find_mlir_lib(MLIRTableGen)
find_mlir_lib(MLIRTargetLLVMIRModuleTranslation)
find_mlir_lib(MLIRTargetLLVMIR)
find_mlir_lib(MLIRTransformUtils)
@ -181,7 +182,6 @@ find_mlir_lib(LLVMAsmParser)
find_mlir_lib(LLVMBinaryFormat)
find_mlir_lib(LLVMRemarks)
find_mlir_lib(LLVMIRReader)
find_mlir_lib(LLVMMLIRTableGen)
find_mlir_lib(LLVMTransformUtils)
find_mlir_lib(LLVMBitstreamReader)
find_mlir_lib(LLVMAnalysis)

View File

@ -58,7 +58,7 @@ Firstly, install MLIR (as a part of LLVM-Project):
``` bash
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
cd llvm-project && git checkout 32791937d7aceb0a5e1eaabf1bb1a6dbe1639792 && cd ..
```
[same-as-file]: <> (utils/build-mlir.sh)
@ -148,7 +148,7 @@ Install MLIR (as a part of LLVM-Project):
```shell
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
cd llvm-project && git checkout 32791937d7aceb0a5e1eaabf1bb1a6dbe1639792 && cd ..
```
[same-as-file]: <> (utils/build-mlir.cmd)

File diff suppressed because it is too large Load Diff

View File

@ -20,7 +20,7 @@ Firstly, install MLIR (as a part of LLVM-Project):
``` bash
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
cd llvm-project && git checkout 32791937d7aceb0a5e1eaabf1bb1a6dbe1639792 && cd ..
```
[same-as-file]: <> (utils/build-mlir.sh)
@ -110,7 +110,7 @@ Install MLIR (as a part of LLVM-Project):
```shell
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
cd llvm-project && git checkout 32791937d7aceb0a5e1eaabf1bb1a6dbe1639792 && cd ..
```
[same-as-file]: <> (utils/build-mlir.cmd)

View File

@ -24,7 +24,7 @@ struct ONNXGemmOpLowering : public ConversionPattern {
bool hasBias = !op->getOperand(2).getType().isa<NoneType>();
Value A, B, C;
ONNXGemmOpOperandAdaptor operandAdaptor(operands);
ONNXGemmOpAdaptor operandAdaptor(operands);
A = operandAdaptor.A();
B = operandAdaptor.B();
if (hasBias)

View File

@ -20,7 +20,7 @@ struct ONNXMatMulOpLowering : public ConversionPattern {
ConversionPatternRewriter &rewriter) const final {
auto loc = op->getLoc();
ONNXMatMulOpOperandAdaptor operandAdaptor(operands);
ONNXMatMulOpAdaptor operandAdaptor(operands);
Value A = operandAdaptor.A();
Value B = operandAdaptor.B();
auto AShape = A.getType().cast<MemRefType>().getShape();

View File

@ -28,7 +28,7 @@ struct ONNXSoftmaxOpLowering : public ConversionPattern {
assert(axis >= -rank && axis <= rank - 1);
auto loc = op->getLoc();
ONNXSoftmaxOpOperandAdaptor operandAdaptor(operands);
ONNXSoftmaxOpAdaptor operandAdaptor(operands);
Value input = operandAdaptor.input();
// Insert an allocation and deallocation for the result of this operation.
auto elementType = memRefType.getElementType();

View File

@ -20,7 +20,7 @@ struct ONNXConvOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto loc = op->getLoc();
ONNXConvOpOperandAdaptor operandAdaptor(operands);
ONNXConvOpAdaptor operandAdaptor(operands);
// Insert an allocation and deallocation for the result of this operation.
auto memRefType = convertToMemRefType(*op->result_type_begin());
Value alloc;

View File

@ -21,7 +21,7 @@ struct ONNXBatchNormalizationTestModeOpLowering : public ConversionPattern {
ConversionPatternRewriter &rewriter) const final {
// batchnorm{epsilon}(x, scale, bias, mean, variance) =
// scale * (x - mean) / sqrt(variance + epsilon) + bias
ONNXBatchNormalizationTestModeOpOperandAdaptor operandAdaptor(operands);
ONNXBatchNormalizationTestModeOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
auto memRefType = convertToMemRefType(*op->result_type_begin());

View File

@ -190,7 +190,7 @@ struct ONNXPoolOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXMaxPoolSingleOutOpOperandAdaptor operandAdaptor(operands);
ONNXMaxPoolSingleOutOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
PoolOp poolOp = llvm::dyn_cast<PoolOp>(op);

View File

@ -159,7 +159,7 @@ getActivationPack<ONNXLSTMOp, LstmActivationPack>(ONNXLSTMOp *op) {
template <>
LstmState allocAndInitializeStates<ONNXLSTMOp, LstmState>(
ConversionPatternRewriter &rewriter, Location loc, ONNXLSTMOp *op,
OperandAdaptor<ONNXLSTMOp> operandAdaptor) {
typename ONNXLSTMOp::Adaptor operandAdaptor) {
LstmState state;
// Insert allocation and deallocation for the results of this operation.
@ -239,7 +239,7 @@ LstmState allocAndInitializeStates<ONNXLSTMOp, LstmState>(
template <>
void calculateState<ONNXLSTMOp, LstmState, LstmActivationPack>(
ConversionPatternRewriter &rewriter, Location loc,
OperandAdaptor<ONNXLSTMOp> operandAdaptor, LstmState state,
typename ONNXLSTMOp::Adaptor operandAdaptor, LstmState state,
LstmActivationPack activationPack, Value directionIV, Value sequenceIV) {
bool hasBiasForInput = false, hasPeepholes = false;

View File

@ -51,12 +51,12 @@ std::tuple<A, A> getActivationPack(RNNOp *op);
// Allocate memory for RNN states and initialize them.
template <typename RNNOp, typename S>
S allocAndInitializeStates(ConversionPatternRewriter &rewriter, Location loc,
RNNOp *op, OperandAdaptor<RNNOp> operandAdaptor);
RNNOp *op, typename RNNOp::Adaptor operandAdaptor);
// Calculate new states from the current input and states.
template <typename RNNOp, typename S, typename A>
void calculateState(ConversionPatternRewriter &rewriter, Location loc,
OperandAdaptor<RNNOp> operandAdaptor, S state, A activationSet,
typename RNNOp::Adaptor operandAdaptor, S state, A activationSet,
Value directionIV, Value sequenceIV);
// Write states to the RNN's outputs.
@ -74,7 +74,7 @@ struct ONNXRNNOpLowering : public ConversionPattern {
auto loc = op->getLoc();
RNNOp rnnOp = llvm::dyn_cast<RNNOp>(op);
OperandAdaptor<RNNOp> operandAdaptor(operands);
typename RNNOp::Adaptor operandAdaptor(operands);
if (hasAllNoneOutput<RNNOp>(&rnnOp)) {
rewriter.eraseOp(op);

View File

@ -18,7 +18,7 @@ struct ONNXIdentityOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXIdentityOpOperandAdaptor operandAdaptor(operands);
ONNXIdentityOpAdaptor operandAdaptor(operands);
rewriter.replaceOp(op, operandAdaptor.input());
return success();
}

View File

@ -19,7 +19,7 @@ struct ONNXPadOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXPadOp myOp = llvm::dyn_cast<ONNXPadOp>(op);
ONNXPadOpOperandAdaptor operandAdaptor(operands);
ONNXPadOpAdaptor operandAdaptor(operands);
auto tensorType = myOp.output().getType();
auto loc = op->getLoc();

View File

@ -20,7 +20,7 @@ struct ONNXPadConstantValuePadOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto tensorType = (*op->result_type_begin());
ONNXPadConstantValuePadOpOperandAdaptor operandAdaptor(operands);
ONNXPadConstantValuePadOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
// Only constant padding is supported now.

View File

@ -18,7 +18,7 @@ struct ONNXReshapeOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXReshapeOpOperandAdaptor operandAdaptor(operands);
ONNXReshapeOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
Value data = operandAdaptor.data();
auto inputShape = data.getType().cast<MemRefType>().getShape();

View File

@ -18,7 +18,7 @@ struct ONNXSqueezeOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXSqueezeOpOperandAdaptor operandAdaptor(operands);
ONNXSqueezeOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
auto memRefType = convertToMemRefType(*op->result_type_begin());
auto memRefShape = memRefType.getShape();

View File

@ -18,7 +18,7 @@ struct ONNXTransposeOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXTransposeOpOperandAdaptor operandAdaptor(operands);
ONNXTransposeOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
// Insert an allocation and deallocation for the result of this operation.
auto memRefType = convertToMemRefType(*op->result_type_begin());

View File

@ -18,7 +18,7 @@ struct ONNXUnsqueezeOpLowering : public ConversionPattern {
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
ONNXUnsqueezeOpOperandAdaptor operandAdaptor(operands);
ONNXUnsqueezeOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
auto memRefType = convertToMemRefType(*op->result_type_begin());
int outRank = memRefType.getRank();

View File

@ -139,7 +139,7 @@ public:
op->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
assert(llvmDialect && "expected llvm dialect to be registered");
KrnlGetRefOpOperandAdaptor operandAdaptor(operands);
KrnlGetRefOpAdaptor operandAdaptor(operands);
// This is the type of the krnl.getref output. This type is used
// for the type of the internal MemRef.
@ -340,7 +340,7 @@ public:
LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto *context = op->getContext();
KrnlMemcpyOpOperandAdaptor operandAdaptor(operands);
KrnlMemcpyOpAdaptor operandAdaptor(operands);
auto loc = op->getLoc();
auto *llvmDialect =
op->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
@ -878,6 +878,8 @@ void KrnlToLLVMLoweringPass::runOnOperation() {
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
// Lower the MemRef types to a representation in LLVM.
LowerToLLVMOptions options;
options.emitCWrappers = true;
LLVMTypeConverter typeConverter(&getContext());
// We have a combination of `krnl`, `affine`, and `std` operations. We
@ -885,9 +887,7 @@ void KrnlToLLVMLoweringPass::runOnOperation() {
OwningRewritePatternList patterns;
populateAffineToStdConversionPatterns(patterns, &getContext());
populateLoopToStdConversionPatterns(patterns, &getContext());
populateStdToLLVMConversionPatterns(typeConverter, patterns,
/*emitCWrapperS=*/true,
/*useAlignedAlloc=*/false);
populateStdToLLVMConversionPatterns(typeConverter, patterns, options);
patterns.insert<KrnlGlobalOpLowering, KrnlPackedConstOpLowering>(
&getContext(), typeConverter);
@ -899,8 +899,7 @@ void KrnlToLLVMLoweringPass::runOnOperation() {
// We want to completely lower to LLVM, so we use a `FullConversion`. This
// ensures that only legal operations will remain after the conversion.
if (failed(applyFullConversion(
getOperation(), target, patterns, &typeConverter))) {
if (failed(applyFullConversion(getOperation(), target, patterns))) {
signalPassFailure();
}
}

View File

@ -24,7 +24,7 @@ func @test_constant(%arg0 : tensor<1xf32>) -> tensor<*xf32> {
// CHECK: [[GLOBAL_SIZE_BYTES:%.+]] = llvm.sext [[CONST_MUL1]] : !llvm.i64 to !llvm.i64
/// Volatile flag
// CHECK: [[CONST0:%.+]] = llvm.mlir.constant(0 : i1) : !llvm.i1
// CHECK: [[CONST0:%.+]] = llvm.mlir.constant(false) : !llvm.i1
// CHECK: llvm.call @llvm.memcpy.p0i8.p0i8.i64([[I8ALLOCA]], [[I8GLOBAL]], [[GLOBAL_SIZE_BYTES]], [[CONST0]]) : (!llvm<"i8*">, !llvm<"i8*">, !llvm.i64, !llvm.i1) -> !llvm.void

View File

@ -21,7 +21,7 @@ func @test_reshape(%arg0 : tensor<?x10xf32>, %arg1 : tensor<4xi64>) -> tensor<*x
// CHECK: [[EXT_VAL_1:%.+]] = llvm.extractvalue [[TMP1]][1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
// CHECK: [[SRC:%.+]] = llvm.bitcast [[EXT_VAL_1]] : !llvm<"float*"> to !llvm<"i8*">
// CHECK: [[SIZE:%.+]] = llvm.sext %{{.*}} : !llvm.i64 to !llvm.i64
// CHECK: [[VOLATILE:%.+]] = llvm.mlir.constant(0 : i1) : !llvm.i1
// CHECK: [[VOLATILE:%.+]] = llvm.mlir.constant(false) : !llvm.i1
// CHECK: llvm.call @llvm.memcpy.p0i8.p0i8.i64([[DST]], [[SRC]], [[SIZE]], [[VOLATILE]]) : (!llvm<"i8*">, !llvm<"i8*">, !llvm.i64, !llvm.i1) -> !llvm.void
// CHECK: llvm.return [[RES]] : !llvm<"{ float*, float*, i64, [4 x i64], [4 x i64] }">
}

View File

@ -209,13 +209,15 @@ func @test_exp(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_exp
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
@ -230,13 +232,15 @@ func @test_tanh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_tanh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -257,13 +261,15 @@ func @test_sinh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sinh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -284,13 +290,15 @@ func @test_cosh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_cosh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -311,13 +319,15 @@ func @test_cos(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_cos
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[COS:%.+]] = cos [[LOAD]] : f32
@ -332,13 +342,15 @@ func @test_log(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_log
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[LOG:%.+]] = log [[LOAD]] : f32
@ -353,13 +365,15 @@ func @test_sigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -379,13 +393,15 @@ func @test_relu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_relu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -403,7 +419,8 @@ func @test_reshape(%arg0 : tensor<?x10xf32>, %arg1 : tensor<4xi64>) -> tensor<*x
// CHECK-LABEL: test_reshape
// CHECK: [[TYPE_IN_BYTES_0:%.+]] = constant 4 : i64
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[DIM_0_CAST:%.+]] = index_cast [[DIM_0]] : index to i64
// CHECK: [[MUL_0:%.+]] = muli [[TYPE_IN_BYTES_0]], [[DIM_0_CAST]] : i64
// CHECK: [[CONSTANT_0:%.+]] = constant 10 : i64
@ -412,7 +429,8 @@ func @test_reshape(%arg0 : tensor<?x10xf32>, %arg1 : tensor<4xi64>) -> tensor<*x
// CHECK: [[TYPE_IN_BYTES_1:%.+]] = constant 4 : i64
// CHECK: %[[CONSTANT_1:.+]] = constant 0 : index
// CHECK: [[LOAD_0:%.+]] = affine.load %arg1[%[[CONSTANT_1]]] : memref<4xi64>
// CHECK: [[DIM_1:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_1:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: [[DIM_1_CAST:%.+]] = index_cast [[DIM_1]] : index to i64
// CHECK: [[CONSTANT_2:%.+]] = constant 0 : i64
// CHECK: [[CMP_0:%.+]] = cmpi "eq", [[LOAD_0]], [[CONSTANT_2]] : i64
@ -533,13 +551,15 @@ func @test_elu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_elu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -561,13 +581,15 @@ func @test_leakyrelu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_leakyrelu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -586,13 +608,15 @@ func @test_selu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_selu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -615,13 +639,15 @@ func @test_hardsigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_hardsigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -645,13 +671,15 @@ func @test_reciprocal(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_reciprocal
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
@ -667,13 +695,15 @@ func @test_softplus(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_softplus
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
@ -691,13 +721,15 @@ func @test_softsign(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_softsign
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ABS:%.+]] = absf [[LOAD]] : f32
@ -715,16 +747,19 @@ func @test_add_with_broadcasting(%arg0 : tensor<?xf32>, %arg1 : tensor<?x10xf32>
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_add_with_broadcasting
// CHECK: [[DIM1:%.+]] = dim %arg1, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM1:%.+]] = dim %arg1, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM1]]) : memref<?x10xf32>
// CHECK: [[DIM2:%.+]] = dim %arg0, 0 : memref<?xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM2:%.+]] = dim %arg0, [[C0_0]] : memref<?xf32>
// CHECK: [[ONE:%.+]] = constant 1 : index
// CHECK: [[IS_ONE:%.+]] = cmpi "eq", [[DIM2]], [[ONE]] : index
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM3:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM3:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM3]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[ZERO:%.+]] = constant 0 : index
// CHECK: %[[SELECT1:.+]] = select [[IS_ONE]], [[ZERO]], %arg3 : index
@ -943,13 +978,15 @@ func @test_sqrt(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sqrt
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[SQRT:%.+]] = sqrt [[LOAD]] : f32
@ -1026,13 +1063,15 @@ func @test_sign_f(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sign_f
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -1053,13 +1092,15 @@ func @test_sign_i(%arg0 : tensor<?x10xi32>) -> tensor<*xi32> {
"std.return"(%0) : (tensor<*xi32>) -> ()
// CHECK-LABEL: test_sign_i
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xi32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xi32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xi32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xi32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xi32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xi32>
// CHECK: [[ZERO:%.+]] = constant 0 : i32
@ -1214,13 +1255,15 @@ func @test_matmul5(%arg0 : tensor<5xf32>, %arg1 : tensor<?x5x10xf32>) -> tensor<
// CHECK-LABEL: test_matmul5
// CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32
// CHECK: [[DIM_0:%.+]] = dim %arg1, 0 : memref<?x5x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg1, [[C0]] : memref<?x5x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_1:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_1:%.+]] = dim [[RES]], [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0) with ([[LOOPS]]#0 -> %arg2 = 0 to [[DIM_1]]) {
// CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: affine.store [[CONSTANT]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
@ -1250,13 +1293,15 @@ func @test_matmul6(%arg0 : tensor<?x10x5xf32>, %arg1 : tensor<5xf32>) -> tensor<
// CHECK-LABEL: test_matmul6
// CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10x5xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10x5xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_1:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_1:%.+]] = dim [[RES]], [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0) with ([[LOOPS]]#0 -> %arg2 = 0 to [[DIM_1]]) {
// CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: affine.store [[CONSTANT]], [[RES]][%arg2, %arg3] : memref<?x10xf32>
@ -1562,13 +1607,15 @@ func @test_abs_float(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_abs_float
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ABS:%.+]] = absf [[LOAD]] : f32
@ -1583,13 +1630,15 @@ func @test_abs_int(%arg0 : tensor<?x10xi32>) -> tensor<*xi32> {
"std.return"(%0) : (tensor<*xi32>) -> ()
// CHECK-LABEL: test_abs_int
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xi32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xi32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xi32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xi32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xi32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xi32>
// CHECK: [[ZERO:%.+]] = constant 0 : i32
@ -1745,7 +1794,8 @@ func @test_pool_unknown_dimensions(%arg0 : tensor<1x3x?x32xf32>) -> tensor<*xf32
// CHECK-DAG: #[[AFFINE_MAP:.+]] = affine_map<(d0)[s0, s1, s2, s3] -> ((d0 + s1 - (s0 - 1) * s3 - 1) floordiv s2 + 1)>
// CHECK-LABEL: test_pool_unknown_dimensions
// CHECK: [[DIM:%.+]] = dim %arg0, 2 : memref<1x3x?x32xf32>
// CHECK: [[C0:%.+]] = constant 2 : index
// CHECK: [[DIM:%.+]] = dim %arg0, [[C0]] : memref<1x3x?x32xf32>
// CHECK: [[KERNEL:%.+]] = constant 2 : index
// CHECK: [[PAD:%.+]] = constant 0 : index
// CHECK: [[STRIDE:%.+]] = constant 1 : index
@ -2146,7 +2196,8 @@ func @test_squeeze_unknown_dimensions(%arg0 : tensor<?x1x32x?x64xf32>) -> tensor
"std.return"(%0) : (tensor<*xf32>) -> ()
// CHECK-LABEL: @test_squeeze_unknown_dimensions
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x1x32x?x64xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x1x32x?x64xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x32x64xf32>
// CHECK: [[TENSOR_SIZE_0:%.+]] = constant 8192 : i64
// CHECK: [[DIM_0_i64:%.+]] = index_cast [[DIM_0]] : index to i64
@ -2226,15 +2277,18 @@ func @test_split_unknown_dimension(%arg0 : tensor<?x?x64xf32>) -> (tensor<*xf32>
// CHECK: [[INDEX_MAP:#.+]] = affine_map<(d0) -> (d0 + 2)>
// CHECK-LABEL: @test_split_unknown_dimension
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x?x64xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x?x64xf32>
// CHECK: [[RES_0:%.+]] = alloc([[DIM_0]]) : memref<?x2x64xf32>
// CHECK: [[DIM_1:%.+]] = dim %arg0, 0 : memref<?x?x64xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_1:%.+]] = dim %arg0, [[C0_0]] : memref<?x?x64xf32>
// CHECK: [[RES_1:%.+]] = alloc([[DIM_1]]) : memref<?x30x64xf32>
// CHECK: [[DEF_LOOP_0:%.+]]:3 = krnl.define_loops 3
// CHECK: [[OPT_LOOP_0:%.+]]:3 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOP_0]]#0, [[DEF_LOOP_0]]#1, [[DEF_LOOP_0]]#2
// CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop)
// CHECK: [[DIM_0:%.+]] = dim [[RES_0]], 0 : memref<?x2x64xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES_0]], [[C0_2]] : memref<?x2x64xf32>
// CHECK: krnl.iterate([[OPT_LOOP_0]]#0, [[OPT_LOOP_0]]#1, [[OPT_LOOP_0]]#2) with ([[DEF_LOOP_0]]#0 -> %arg1 = 0 to [[DIM_0]], [[DEF_LOOP_0]]#1 -> %arg2 = 0 to 2, [[DEF_LOOP_0]]#2 -> %arg3 = 0 to 64) {
// CHECK: [[LOAD_0:%.+]] = affine.load %arg0[%arg1, %arg2, %arg3] : memref<?x?x64xf32>
// CHECK: affine.store [[LOAD_0]], [[RES_0]][%arg1, %arg2, %arg3] : memref<?x2x64xf32>
@ -2243,7 +2297,8 @@ func @test_split_unknown_dimension(%arg0 : tensor<?x?x64xf32>) -> (tensor<*xf32>
// CHECK: [[OPT_LOOP_1:%.+]]:3 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOP_1]]#0, [[DEF_LOOP_1]]#1, [[DEF_LOOP_1]]#2
// CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop)
// CHECK: [[DIM_1:%.+]] = dim [[RES_1]], 0 : memref<?x30x64xf32>
// CHECK: [[C0_3:%.+]] = constant 0 : index
// CHECK: [[DIM_1:%.+]] = dim [[RES_1]], [[C0_3]] : memref<?x30x64xf32>
// CHECK: krnl.iterate([[OPT_LOOP_1]]#0, [[OPT_LOOP_1]]#1, [[OPT_LOOP_1]]#2) with ([[DEF_LOOP_1]]#0 -> %arg1 = 0 to [[DIM_1]], [[DEF_LOOP_1]]#1 -> %arg2 = 0 to 30, [[DEF_LOOP_1]]#2 -> %arg3 = 0 to 64) {
// CHECK: %[[INDEX:.+]] = affine.apply [[INDEX_MAP]](%arg2)
// CHECK: [[LOAD_1:%.+]] = affine.load %arg0[%arg1, %[[INDEX]], %arg3] : memref<?x?x64xf32>

View File

@ -282,26 +282,30 @@ func @test_exp_exp(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_exp_exp
/// First Exp
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: affine.store [[EXP]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Exp
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
@ -323,13 +327,15 @@ func @test_tanh_tanh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_tanh_tanh
/// First Tanh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -342,13 +348,15 @@ func @test_tanh_tanh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[TANH]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Tanh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -376,13 +384,15 @@ func @test_sinh_sinh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_sinh_sinh
/// First Sinh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -395,13 +405,15 @@ func @test_sinh_sinh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SINH_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Sinh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_0]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -429,13 +441,15 @@ func @test_cosh_cosh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_cosh_cosh
/// First Cosh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -448,13 +462,15 @@ func @test_cosh_cosh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[COSH_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Cosh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -482,13 +498,15 @@ func @test_sigmoid_sigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_sigmoid_sigmoid
/// First Sigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -500,13 +518,15 @@ func @test_sigmoid_sigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SIGMOID_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Sigmoid
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -533,13 +553,15 @@ func @test_relu_relu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_relu_relu
/// First Relu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -548,13 +570,15 @@ func @test_relu_relu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[RELU_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Relu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -699,13 +723,15 @@ func @test_elu_elu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_elu_elu
/// First Elu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -719,13 +745,15 @@ func @test_elu_elu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SELECT]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Elu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -754,13 +782,15 @@ func @test_leakyrelu_leakyrelu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_leakyrelu_leakyrelu
/// First LeakyRelu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -771,13 +801,15 @@ func @test_leakyrelu_leakyrelu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SELECT]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second LeakyRelu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -803,13 +835,15 @@ func @test_selu_selu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_selu_selu
/// First Selu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -824,13 +858,15 @@ func @test_selu_selu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SELU_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Selu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -860,13 +896,15 @@ func @test_hardsigmoid_hardsigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_hardsigmoid_hardsigmoid
/// First HardSigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -882,13 +920,15 @@ func @test_hardsigmoid_hardsigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[SELECT2]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second HardSigmoid
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
@ -919,13 +959,15 @@ func @test_reciprocal_reciprocal(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK-LABEL: test_reciprocal_reciprocal
/// First Reciprocal
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim %arg0, [[C0]] : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[C0_0:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim %arg0, [[C0_0]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
@ -933,13 +975,15 @@ func @test_reciprocal_reciprocal(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
// CHECK: affine.store [[RECIPROCAL_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Reciprocal
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_1:%.+]] = constant 0 : index
// CHECK: [[DIM_0:%.+]] = dim [[RES]], [[C0_1]] : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[C0_2:%.+]] = constant 0 : index
// CHECK: [[DIM_2:%.+]] = dim [[RES]], [[C0_2]] : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = affine.load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32

View File

@ -1,3 +1,3 @@
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
cd llvm-project && git checkout 32791937d7aceb0a5e1eaabf1bb1a6dbe1639792 && cd ..