Rewrite shape and size OP (#285)
* add shape inference * Revert "add shape inference" This reverts commit f9d42f39e68e14b5648abccfc8617fff00244d16. * add rewrite rules * test cases * format * add constraint * response to review * response to review
This commit is contained in:
parent
5e11429d77
commit
ac67900baf
|
@ -4729,6 +4729,7 @@ def ONNXSequenceLengthOp:ONNX_Op<"SequenceLength",
|
|||
|
||||
def ONNXShapeOp:ONNX_Op<"Shape",
|
||||
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
|
||||
let hasCanonicalizer = 1;
|
||||
let summary = "ONNX Shape operation";
|
||||
let description = [{
|
||||
"Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor."
|
||||
|
@ -4863,6 +4864,7 @@ def ONNXSinhOp:ONNX_Op<"Sinh",
|
|||
|
||||
def ONNXSizeOp:ONNX_Op<"Size",
|
||||
[NoSideEffect]> {
|
||||
let hasCanonicalizer = 1;
|
||||
let summary = "ONNX Size operation";
|
||||
let description = [{
|
||||
"Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor."
|
||||
|
|
|
@ -27,6 +27,29 @@ DenseElementsAttr createDenseElementsAttrFromFloatAttr(
|
|||
return mlir::DenseElementsAttr::get(tensorType, llvm::makeArrayRef(values));
|
||||
}
|
||||
|
||||
// Create a DenseElementsAttr based on the shape of type.
|
||||
DenseElementsAttr createDenseElementsAttrFromShape(
|
||||
PatternRewriter &rewriter, Value value) {
|
||||
auto inType = value.getType().cast<ShapedType>();
|
||||
auto shape = inType.getShape();
|
||||
SmallVector<int64_t, 1> dims = {inType.getRank()};
|
||||
SmallVector<int64_t, 4> values(shape.begin(), shape.end());
|
||||
auto tensorType =
|
||||
mlir::RankedTensorType::get(dims, rewriter.getIntegerType(64));
|
||||
return mlir::DenseElementsAttr::get(tensorType, llvm::makeArrayRef(values));
|
||||
}
|
||||
|
||||
// Create a DenseElementsAttr based on the size of type.
|
||||
DenseElementsAttr createDenseElementsAttrFromSize(
|
||||
PatternRewriter &rewriter, Value value) {
|
||||
auto inType = value.getType().cast<ShapedType>();
|
||||
SmallVector<int64_t, 1> dims(1, 1);
|
||||
SmallVector<int64_t, 1> values = {inType.getNumElements()};
|
||||
auto tensorType =
|
||||
mlir::RankedTensorType::get(dims, rewriter.getIntegerType(64));
|
||||
return mlir::DenseElementsAttr::get(tensorType, llvm::makeArrayRef(values));
|
||||
}
|
||||
|
||||
// If 'lhs' is not NoneType, return 'lhs - rhs'.
|
||||
// Otherwise, return '-rhs'.
|
||||
Value subtractOrNeg(
|
||||
|
@ -128,3 +151,15 @@ void ONNXBatchNormalizationTestModeOp::getCanonicalizationPatterns(
|
|||
OwningRewritePatternList &results, MLIRContext *context) {
|
||||
results.insert<FuseBatchNormTestModeConvPattern>(context);
|
||||
}
|
||||
|
||||
/// on the ONNXShapeOp.
|
||||
void ONNXShapeOp::getCanonicalizationPatterns(
|
||||
OwningRewritePatternList &results, MLIRContext *context) {
|
||||
results.insert<ShapeToConstantPattern>(context);
|
||||
}
|
||||
|
||||
/// on the ONNXSizeOp.
|
||||
void ONNXSizeOp::getCanonicalizationPatterns(
|
||||
OwningRewritePatternList &results, MLIRContext *context) {
|
||||
results.insert<SizeToConstantPattern>(context);
|
||||
}
|
||||
|
|
|
@ -28,6 +28,14 @@ include "src/Dialect/ONNX/ONNXOps.td"
|
|||
def createDenseElementsAttrFromFloatAttr : NativeCodeCall<
|
||||
"createDenseElementsAttrFromFloatAttr($_builder, $0.getType().cast<ShapedType>().getElementType(), $1)">;
|
||||
|
||||
// Create a DenseElementsAttr from the shape of the type of a value.
|
||||
def createDenseElementsAttrFromShape : NativeCodeCall<
|
||||
"createDenseElementsAttrFromShape($_builder, $0)">;
|
||||
|
||||
// Create a DenseElementsAttr from the size of the type of a value.
|
||||
def createDenseElementsAttrFromSize : NativeCodeCall<
|
||||
"createDenseElementsAttrFromSize($_builder, $0)">;
|
||||
|
||||
// If '$1' is not NoneType, do subtraction '$1 - $2'.
|
||||
// Otherwise, take the negative of '$2'.
|
||||
def subtractOrNeg: NativeCodeCall<
|
||||
|
@ -172,4 +180,25 @@ def FuseBatchNormTestModeConvPattern: Pat<
|
|||
$auto_pad, $dilation, $group, $kernel_shape, $pads, $strides)
|
||||
>;
|
||||
|
||||
def IsStaticShapeTensor:
|
||||
Constraint<
|
||||
CPred<
|
||||
"$_self.getType().cast<::mlir::ShapedType>().hasStaticShape()">,
|
||||
"hasStaticShape">;
|
||||
|
||||
def ShapeToConstantPattern: Pat<
|
||||
(ONNXShapeOp $A),
|
||||
(ONNXConstantOp
|
||||
(GetNullAttr),
|
||||
(createDenseElementsAttrFromShape $A)),
|
||||
[(IsStaticShapeTensor:$A)]
|
||||
>;
|
||||
|
||||
def SizeToConstantPattern: Pat<
|
||||
(ONNXSizeOp $A),
|
||||
(ONNXConstantOp
|
||||
(GetNullAttr),
|
||||
(createDenseElementsAttrFromSize $A)),
|
||||
[(IsStaticShapeTensor:$A)]
|
||||
>;
|
||||
#endif // ONNX_REWRITE
|
||||
|
|
|
@ -222,3 +222,49 @@ func @test_transpose_fusion_removal(%arg0: tensor<10x11x12x13xf32>) -> tensor<10
|
|||
// CHECK-NEXT: return %arg0 : tensor<10x11x12x13xf32>
|
||||
"std.return"(%1) : (tensor<10x11x12x13xf32>) -> ()
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @test_shape1(%arg0 : tensor<2x4x8x16xf32>) -> tensor<*xi64> {
|
||||
%0 = "onnx.Shape"(%arg0) : (tensor<2x4x8x16xf32>) -> tensor<*xi64>
|
||||
return %0 : tensor<*xi64>
|
||||
|
||||
// CHECK-LABEL: @test_shape1
|
||||
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<[2, 4, 8, 16]> : tensor<4xi64>} : () -> tensor<*xi64>
|
||||
// CHECK-NEXT: %0 : tensor<*xi64>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @test_shape2(%arg0 : tensor<?x4x8x16xf32>) -> tensor<*xi64> {
|
||||
%0 = "onnx.Shape"(%arg0) : (tensor<?x4x8x16xf32>) -> tensor<*xi64>
|
||||
return %0 : tensor<*xi64>
|
||||
|
||||
// CHECK-LABEL: @test_shape2
|
||||
// CHECK-NEXT: %0 = "onnx.Shape"(%arg0) : (tensor<?x4x8x16xf32>) -> tensor<*xi64>
|
||||
// CHECK-NEXT: return %0 : tensor<*xi64>
|
||||
}
|
||||
|
||||
|
||||
// -----
|
||||
|
||||
func @test_size1(%arg0 : tensor<2x4x8x16xf32>) -> tensor<*xi64> {
|
||||
%0 = "onnx.Size"(%arg0) : (tensor<2x4x8x16xf32>) -> tensor<*xi64>
|
||||
return %0 : tensor<*xi64>
|
||||
|
||||
// CHECK-LABEL: @test_size1
|
||||
// CHECK-NEXT: %0 = "onnx.Constant"() {value = dense<1024> : tensor<1xi64>} : () -> tensor<*xi64>
|
||||
// CHECK-NEXT: %0 : tensor<*xi64>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @test_size2(%arg0 : tensor<*xf32>) -> tensor<*xi64> {
|
||||
%0 = "onnx.Size"(%arg0) : (tensor<*xf32>) -> tensor<*xi64>
|
||||
return %0 : tensor<*xi64>
|
||||
|
||||
// CHECK-LABEL: @test_size2
|
||||
// CHECK-NEXT: %0 = "onnx.Size"(%arg0) : (tensor<*xf32>) -> tensor<*xi64>
|
||||
// CHECK-NEXT: return %0 : tensor<*xi64>
|
||||
}
|
||||
|
||||
|
|
|
@ -321,7 +321,7 @@ OpsWithShapeInference=[
|
|||
]
|
||||
|
||||
# Operations supporting canonicalization.
|
||||
OpsWithCanonicalizer = ['Add', 'Identity', 'Gemm', 'Conv', 'Cast', 'Transpose', 'Dropout']
|
||||
OpsWithCanonicalizer = ['Add', 'Identity', 'Gemm', 'Conv', 'Cast', 'Transpose', 'Dropout', 'Shape', 'Size']
|
||||
|
||||
# Operations who have operands that, if produced by constant operations, should
|
||||
# be promoted to become an attribute (via attribute promotion).
|
||||
|
|
Loading…
Reference in New Issue