Move to more recent LLVM commit ID (#131)
* Move to more recent LLVM ID (May 15) * clang-format * Bump cache version up * Update readme * Fix doc check * Move to a newer commit id * Update LoopToStandard -> SCFToStandard * Change MLIRSideEffects to MLIRSideEffectInterfaces Co-authored-by: Tian Jin <tjingrant@gmail.com>
This commit is contained in:
parent
5d85843be4
commit
ad61eee908
|
@ -18,7 +18,7 @@ jobs:
|
|||
git submodule update --init --recursive
|
||||
# Use cached mlir installation if possible.
|
||||
- restore_cache:
|
||||
key: V11-LLVM-PROJECT-{{ arch }}
|
||||
key: V13-LLVM-PROJECT-{{ arch }}
|
||||
- run:
|
||||
name: Install MLIR
|
||||
command: |
|
||||
|
@ -29,7 +29,7 @@ jobs:
|
|||
source onnx-mlir/utils/install-mlir.sh
|
||||
fi
|
||||
- save_cache:
|
||||
key: V11-LLVM-PROJECT-{{ arch }}
|
||||
key: V13-LLVM-PROJECT-{{ arch }}
|
||||
paths:
|
||||
- llvm-project
|
||||
- run:
|
||||
|
|
16
MLIR.cmake
16
MLIR.cmake
|
@ -144,16 +144,16 @@ find_mlir_lib(MLIRExecutionEngine)
|
|||
find_mlir_lib(MLIRIR)
|
||||
find_mlir_lib(MLIRLLVMIR)
|
||||
find_mlir_lib(MLIRLoopAnalysis)
|
||||
find_mlir_lib(MLIRLoopToStandard)
|
||||
find_mlir_lib(MLIRLoopOps)
|
||||
find_mlir_lib(MLIRSCFToStandard)
|
||||
find_mlir_lib(MLIRLoopLikeInterface)
|
||||
find_mlir_lib(MLIRSCF)
|
||||
find_mlir_lib(MLIRLLVMIRTransforms)
|
||||
find_mlir_lib(MLIRMlirOptMain)
|
||||
find_mlir_lib(MLIRParser)
|
||||
find_mlir_lib(MLIRPass)
|
||||
find_mlir_lib(MLIRStandardOps)
|
||||
find_mlir_lib(MLIRStandardToLLVM)
|
||||
find_mlir_lib(MLIRSideEffects)
|
||||
find_mlir_lib(MLIRSideEffectInterfaces)
|
||||
find_mlir_lib(MLIRTargetLLVMIR)
|
||||
find_mlir_lib(MLIRTransforms)
|
||||
find_mlir_lib(MLIRTransformUtils)
|
||||
|
@ -205,13 +205,13 @@ set(MLIRLibs
|
|||
${MLIRExecutionEngine}
|
||||
${MLIRIR}
|
||||
${MLIRLLVMIRTransforms}
|
||||
${MLIRLoopToStandard}
|
||||
${MLIRLoopOps}
|
||||
${MLIRSCFToStandard}
|
||||
${MLIRSCF}
|
||||
${MLIRLoopAnalysis}
|
||||
${MLIRLoopLikeInterface}
|
||||
${MLIROpenMP}
|
||||
${MLIRMlirOptMain}
|
||||
${MLIRSideEffects}
|
||||
${MLIRSideEffectInterfaces}
|
||||
${MLIRStandardOps}
|
||||
${MLIRStandardToLLVM}
|
||||
${MLIRSupport}
|
||||
|
@ -251,9 +251,9 @@ set(MLIRWholeArchiveLibs
|
|||
MLIRStandardOps
|
||||
MLIRStandardToLLVM
|
||||
MLIRTransforms
|
||||
MLIRLoopToStandard
|
||||
MLIRSCFToStandard
|
||||
MLIRVector
|
||||
MLIRLoopOps
|
||||
MLIRSCF
|
||||
MLIRIR)
|
||||
|
||||
# ONNX MLIR libraries that must be linked with --whole-archive for static build or
|
||||
|
|
|
@ -24,7 +24,7 @@ Firstly, install MLIR (as a part of LLVM-Project):
|
|||
``` bash
|
||||
git clone https://github.com/llvm/llvm-project.git
|
||||
# Check out a specific branch that is known to work with ONNX MLIR.
|
||||
cd llvm-project && git checkout 3ce0ad1b336e67a76d78ae7ff7d66fe127586620 && cd ..
|
||||
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
|
||||
```
|
||||
|
||||
[same-as-file]: <> (utils/build-mlir.sh)
|
||||
|
@ -114,7 +114,7 @@ Install MLIR (as a part of LLVM-Project):
|
|||
```shell
|
||||
git clone https://github.com/llvm/llvm-project.git
|
||||
# Check out a specific branch that is known to work with ONNX MLIR.
|
||||
cd llvm-project && git checkout 3ce0ad1b336e67a76d78ae7ff7d66fe127586620 && cd ..
|
||||
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
|
||||
```
|
||||
|
||||
[same-as-file]: <> (utils/build-mlir.cmd)
|
||||
|
|
|
@ -20,7 +20,7 @@ Firstly, install MLIR (as a part of LLVM-Project):
|
|||
``` bash
|
||||
git clone https://github.com/llvm/llvm-project.git
|
||||
# Check out a specific branch that is known to work with ONNX MLIR.
|
||||
cd llvm-project && git checkout 3ce0ad1b336e67a76d78ae7ff7d66fe127586620 && cd ..
|
||||
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
|
||||
```
|
||||
|
||||
[same-as-file]: <> (utils/build-mlir.sh)
|
||||
|
@ -110,7 +110,7 @@ Install MLIR (as a part of LLVM-Project):
|
|||
```shell
|
||||
git clone https://github.com/llvm/llvm-project.git
|
||||
# Check out a specific branch that is known to work with ONNX MLIR.
|
||||
cd llvm-project && git checkout 3ce0ad1b336e67a76d78ae7ff7d66fe127586620 && cd ..
|
||||
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
|
||||
```
|
||||
|
||||
[same-as-file]: <> (utils/build-mlir.cmd)
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
#include <regex>
|
||||
#include <tuple>
|
||||
|
||||
#include "mlir/Analysis/Verifier.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/IR/Attributes.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
|
@ -26,6 +25,7 @@
|
|||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/IR/StandardTypes.h"
|
||||
#include "mlir/IR/Types.h"
|
||||
#include "mlir/IR/Verifier.h"
|
||||
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/ScopedHashTable.h"
|
||||
|
|
|
@ -47,12 +47,12 @@ KrnlOpsDialect::KrnlOpsDialect(MLIRContext *context)
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void KrnlDefineLoopsOp::build(
|
||||
Builder *builder, OperationState &result, int64_t num_loops) {
|
||||
OpBuilder &builder, OperationState &result, int64_t num_loops) {
|
||||
// Create the same number of dimension handlers as the number of
|
||||
// dimensions in the associated integer set.
|
||||
result.types.append(num_loops, LoopType::get(builder->getContext()));
|
||||
result.types.append(num_loops, LoopType::get(builder.getContext()));
|
||||
result.addAttribute(
|
||||
getNumLoopsAttrName(), builder->getI32IntegerAttr(num_loops));
|
||||
getNumLoopsAttrName(), builder.getI32IntegerAttr(num_loops));
|
||||
}
|
||||
|
||||
void print(OpAsmPrinter &p, KrnlDefineLoopsOp &op) {
|
||||
|
@ -83,9 +83,8 @@ ParseResult parseKrnlDefineLoopsOp(
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void KrnlOptimizeLoopsOp::build(
|
||||
Builder *builder, OperationState &result, int num_optimized_loops) {
|
||||
result.types.append(
|
||||
num_optimized_loops, LoopType::get(builder->getContext()));
|
||||
OpBuilder &builder, OperationState &result, int num_optimized_loops) {
|
||||
result.types.append(num_optimized_loops, LoopType::get(builder.getContext()));
|
||||
// Create a region and a block for the body.
|
||||
// Schedule intrinsics will be placed into this region.
|
||||
Region *region = result.addRegion();
|
||||
|
@ -145,7 +144,7 @@ ParseResult parseKrnlOptimizeLoopsOp(
|
|||
* Then the bounds will be parsed as:
|
||||
* %i0 = 10 to N : %i1 = M to 20
|
||||
*/
|
||||
void KrnlIterateOp::build(Builder *builder, OperationState &result,
|
||||
void KrnlIterateOp::build(OpBuilder &builder, OperationState &result,
|
||||
KrnlIterateOperandPack operandPack) {
|
||||
// Record optimized loops and the number of such loops.
|
||||
result.addOperands(operandPack.getOperands());
|
||||
|
@ -153,7 +152,7 @@ void KrnlIterateOp::build(Builder *builder, OperationState &result,
|
|||
KrnlIterateOp::getBoundsAttrName(), operandPack.getAttributes());
|
||||
|
||||
result.addAttribute(getNumOptimizedLoopsAttrName(),
|
||||
builder->getI64IntegerAttr(operandPack.getNumOptimizedLoops()));
|
||||
builder.getI64IntegerAttr(operandPack.getNumOptimizedLoops()));
|
||||
|
||||
// Create a region and a block for the body. The arguments of the region are
|
||||
// the loop induction variables; there can be multiple induction variables
|
||||
|
@ -161,11 +160,11 @@ void KrnlIterateOp::build(Builder *builder, OperationState &result,
|
|||
Region *bodyRegion = result.addRegion();
|
||||
auto *body = new Block();
|
||||
auto body_args = llvm::SmallVector<Type, 4>(
|
||||
operandPack.getNumInputLoops(), IndexType::get(builder->getContext()));
|
||||
operandPack.getNumInputLoops(), IndexType::get(builder.getContext()));
|
||||
body->addArguments(body_args);
|
||||
bodyRegion->push_back(body);
|
||||
|
||||
ensureTerminator(*bodyRegion, *builder, result.location);
|
||||
ensureTerminator(*bodyRegion, builder, result.location);
|
||||
}
|
||||
|
||||
void print(OpAsmPrinter &p, KrnlIterateOp &op) {
|
||||
|
@ -247,7 +246,7 @@ ParseResult parseKrnlIterateOp(OpAsmParser &parser, OperationState &result) {
|
|||
// Get the attribute location.
|
||||
llvm::SMLoc attrLoc = parser.getCurrentLocation();
|
||||
Attribute boundAttr;
|
||||
llvm::SmallVector<NamedAttribute, 1> tempBoundAttrContainer;
|
||||
NamedAttrList tempBoundAttrContainer;
|
||||
if (parser.parseAttribute(
|
||||
boundAttr, builder.getIndexType(), "temp", tempBoundAttrContainer))
|
||||
return failure();
|
||||
|
@ -361,7 +360,7 @@ ParseResult parseKrnlReturnLoopsOp(
|
|||
return success();
|
||||
}
|
||||
|
||||
void KrnlEntryPointOp::build(mlir::Builder *builder, OperationState &state,
|
||||
void KrnlEntryPointOp::build(mlir::OpBuilder &builder, OperationState &state,
|
||||
SymbolRefAttr funcAttr, IntegerAttr numInputs, IntegerAttr numOutputs) {
|
||||
state.addAttribute(KrnlEntryPointOp::getEntryPointFuncAttrName(), funcAttr);
|
||||
state.addAttribute(KrnlEntryPointOp::getNumInputsAttrName(), numInputs);
|
||||
|
|
|
@ -29,7 +29,7 @@ def KrnlDefineLoopsOp : Op<Krnl_Dialect, "define_loops"> {
|
|||
let arguments = (ins);
|
||||
let results = (outs Variadic<AnyType>);
|
||||
let skipDefaultBuilders = 1;
|
||||
let builders = [ OpBuilder<"Builder *builder, OperationState &result,"
|
||||
let builders = [ OpBuilder<"OpBuilder &builder, OperationState &result,"
|
||||
"int64_t num_loops"> ];
|
||||
|
||||
let printer = [{ return ::print(p, *this); }];
|
||||
|
@ -67,7 +67,7 @@ def KrnlOptimizeLoopsOp : Op<Krnl_Dialect, "optimize_loops"> {
|
|||
|
||||
let skipDefaultBuilders = 1;
|
||||
|
||||
let builders = [ OpBuilder<"Builder *builder, OperationState &result, "
|
||||
let builders = [ OpBuilder<"OpBuilder &builder, OperationState &result, "
|
||||
"int timestamp_space_rank"> ];
|
||||
|
||||
let printer = [{ return ::print(p, *this); }];
|
||||
|
@ -100,7 +100,7 @@ def KrnlIterateOp : Op<Krnl_Dialect, "iterate", [ImplicitKrnlTerminator]> {
|
|||
let arguments = (ins Variadic<AnyType>);
|
||||
let regions = (region SizedRegion<1>:$bodyRegion);
|
||||
let skipDefaultBuilders = 1;
|
||||
let builders = [ OpBuilder<"Builder *builder, OperationState &result, "
|
||||
let builders = [ OpBuilder<"OpBuilder &builder, OperationState &result, "
|
||||
"KrnlIterateOperandPack operandPack"> ];
|
||||
|
||||
let extraClassDeclaration = [{
|
||||
|
@ -165,7 +165,7 @@ def KrnlEntryPointOp : Op<Krnl_Dialect, "entry_point"> {
|
|||
let summary = "Indicate ONNX entry point";
|
||||
let description = [{The "krnl.entry_point" function indicates the main entry
|
||||
point of ONNX model.}];
|
||||
let builders = [ OpBuilder<"Builder *builder, OperationState &result, "
|
||||
let builders = [ OpBuilder<"OpBuilder &builder, OperationState &result, "
|
||||
"SymbolRefAttr funcAttr, IntegerAttr numInputs, "
|
||||
"IntegerAttr numOutputs"> ];
|
||||
|
||||
|
|
|
@ -61,7 +61,7 @@ class MLONNX_Op<string mnemonic, list<OpTrait> traits = []> :
|
|||
// 4. type of string, complex64 and complex128 for input/output are ignored
|
||||
// 5. unsigned int are treated as signed one
|
||||
|
||||
include "mlir/Interfaces/SideEffects.td"
|
||||
include "mlir/Interfaces/SideEffectInterfaces.td"
|
||||
include "src/Dialect/MLONNX/MLONNXOps.td.inc"
|
||||
|
||||
#endif // MLONNX_OPS
|
||||
|
|
|
@ -438,22 +438,22 @@ ONNXOpsDialect::ONNXOpsDialect(mlir::MLIRContext *ctx)
|
|||
>();
|
||||
}
|
||||
|
||||
void ONNXEntryPointOp::build(mlir::Builder *builder,
|
||||
void ONNXEntryPointOp::build(mlir::OpBuilder &builder,
|
||||
mlir::OperationState &state, mlir::FuncOp function, int numInputs,
|
||||
int numOutputs) {
|
||||
state.addAttribute(ONNXEntryPointOp::getEntryPointFuncAttrName(),
|
||||
builder->getSymbolRefAttr(function));
|
||||
builder.getSymbolRefAttr(function));
|
||||
state.addAttribute(ONNXEntryPointOp::getNumInputsAttrName(),
|
||||
builder->getI32IntegerAttr(numInputs));
|
||||
builder.getI32IntegerAttr(numInputs));
|
||||
state.addAttribute(ONNXEntryPointOp::getNumOutputsAttrName(),
|
||||
builder->getI32IntegerAttr(numOutputs));
|
||||
builder.getI32IntegerAttr(numOutputs));
|
||||
}
|
||||
|
||||
ONNXEntryPointOp ONNXEntryPointOp::create(mlir::Location location,
|
||||
mlir::FuncOp &func, int numInputs, int numOutputs) {
|
||||
mlir::OperationState state(location, "onnx.EntryPoint");
|
||||
Builder builder(location->getContext());
|
||||
mlir::ONNXEntryPointOp::build(&builder, state, func, numInputs, numOutputs);
|
||||
OpBuilder builder(location->getContext());
|
||||
mlir::ONNXEntryPointOp::build(builder, state, func, numInputs, numOutputs);
|
||||
Operation *op = mlir::Operation::create(state);
|
||||
auto onnxEntryOp = llvm::cast<mlir::ONNXEntryPointOp>(op);
|
||||
return onnxEntryOp;
|
||||
|
@ -1573,7 +1573,7 @@ bool ONNXPadConstantValuePadOp::inferShapes() {
|
|||
return false;
|
||||
}
|
||||
|
||||
void ONNXPadConstantValuePadOp::build(Builder *builder, OperationState &state,
|
||||
void ONNXPadConstantValuePadOp::build(OpBuilder &builder, OperationState &state,
|
||||
Value data, ArrayAttr pads, FloatAttr constant_value, StringAttr mode) {
|
||||
Type outputType = padShapeInferenceHelper(data, pads);
|
||||
if (!outputType) {
|
||||
|
|
|
@ -61,7 +61,7 @@ class ONNX_Op<string mnemonic, list<OpTrait> traits = []> :
|
|||
// 4. type of string, complex64 and complex128 for input/output are ignored
|
||||
// 5. unsigned int are treated as signed one
|
||||
|
||||
include "mlir/Interfaces/SideEffects.td"
|
||||
include "mlir/Interfaces/SideEffectInterfaces.td"
|
||||
include "src/Dialect/ONNX/ONNXOps.td.inc"
|
||||
|
||||
// Indicate entry point functions of ONNX graph.
|
||||
|
@ -71,7 +71,7 @@ def ONNXEntryPointOp: ONNX_Op<"EntryPoint"> {
|
|||
The "onnx.EntryPoint" function indicates the main entry point of ONNX model.
|
||||
}];
|
||||
|
||||
let builders = [OpBuilder<[{Builder *builder, OperationState &state,
|
||||
let builders = [OpBuilder<[{OpBuilder &builder, OperationState &state,
|
||||
FuncOp function, int numInputs, int numOutputs}]>];
|
||||
|
||||
let extraClassDeclaration = [{
|
||||
|
@ -183,7 +183,7 @@ def ONNXPadConstantValuePadOp : ONNX_Op<"PadConstantValuePad",
|
|||
DefaultValuedAttr<StrAttr, "constant">:$mode);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
// A build method with the result type deduction.
|
||||
let builders = [OpBuilder<"Builder *builder, OperationState &state, "
|
||||
let builders = [OpBuilder<"OpBuilder &builder, OperationState &state, "
|
||||
"Value data, ArrayAttr pads, "
|
||||
"FloatAttr constant_value, StringAttr mode">];
|
||||
}
|
||||
|
|
|
@ -15,11 +15,11 @@ def ONNXAbsOp:ONNX_Op<"Abs",
|
|||
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$X);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$Y);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value X", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value X", [{
|
||||
auto elementType = X.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), X);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
@ -349,7 +349,7 @@ def ONNXConstantOp:ONNX_Op<"Constant",
|
|||
OptionalAttr<AnyAttr>:$value);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Attribute sparse_value, Attribute value", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Attribute sparse_value, Attribute value", [{
|
||||
if (value) {
|
||||
auto tensorType = value.getType();
|
||||
build(builder, state, tensorType, sparse_value, value);
|
||||
|
@ -673,11 +673,11 @@ def ONNXExpOp:ONNX_Op<"Exp",
|
|||
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$input);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value input", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value input", [{
|
||||
auto elementType = input.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), input);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
@ -1780,11 +1780,11 @@ def ONNXMulOp:ONNX_Op<"Mul",
|
|||
AnyTypeOf<[AnyMemRef, AnyTensor]>:$B);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$C);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value A, Value B", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value A, Value B", [{
|
||||
auto elementType = A.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), A, B);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
@ -2014,11 +2014,11 @@ def ONNXPadOp:ONNX_Op<"Pad",
|
|||
DefaultValuedAttr<StrAttr, "constant">:$mode);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value data, Value pads, Value constant_value, StringAttr mode", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value data, Value pads, Value constant_value, StringAttr mode", [{
|
||||
auto elementType = data.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), data, pads, constant_value, mode);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
@ -2473,11 +2473,11 @@ def ONNXReduceSumOp:ONNX_Op<"ReduceSum",
|
|||
DefaultValuedAttr<I64Attr, "1">:$keepdims);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$reduced);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value data, ArrayAttr axes, IntegerAttr keepdims", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value data, ArrayAttr axes, IntegerAttr keepdims", [{
|
||||
auto elementType = data.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), data, axes, keepdims);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
@ -2502,11 +2502,11 @@ def ONNXReduceSumSquareOp:ONNX_Op<"ReduceSumSquare",
|
|||
DefaultValuedAttr<I64Attr, "1">:$keepdims);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$reduced);
|
||||
let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Value data, ArrayAttr axes, IntegerAttr keepdims", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Value data, ArrayAttr axes, IntegerAttr keepdims", [{
|
||||
auto elementType = data.getType().cast<TensorType>().getElementType();
|
||||
build(builder, state, UnrankedTensorType::get(elementType), data, axes, keepdims);
|
||||
}]>,
|
||||
OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{
|
||||
auto elementType = operands[0].getType().cast<TensorType>().getElementType();
|
||||
std::vector<mlir::Type> outputTypes;
|
||||
outputTypes.emplace_back(UnrankedTensorType::get(elementType));
|
||||
|
|
|
@ -79,7 +79,7 @@ void compileModuleToSharedLibrary(
|
|||
void registerDialects() {
|
||||
mlir::registerDialect<mlir::AffineDialect>();
|
||||
mlir::registerDialect<mlir::LLVM::LLVMDialect>();
|
||||
mlir::registerDialect<mlir::loop::LoopOpsDialect>();
|
||||
mlir::registerDialect<mlir::scf::SCFDialect>();
|
||||
mlir::registerDialect<mlir::StandardOpsDialect>();
|
||||
mlir::registerDialect<mlir::ONNXOpsDialect>();
|
||||
mlir::registerDialect<mlir::KrnlOpsDialect>();
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
#include "src/Dialect/ONNX/ONNXOps.hpp"
|
||||
#include "src/Pass/Passes.hpp"
|
||||
|
||||
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
|
||||
#include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
|
||||
#include "mlir/ExecutionEngine/ExecutionEngine.h"
|
||||
#include "mlir/ExecutionEngine/OptUtils.h"
|
||||
#include "mlir/IR/MLIRContext.h"
|
||||
|
|
|
@ -57,7 +57,7 @@ static llvm::cl::opt<bool> allowUnregisteredDialects(
|
|||
int main(int argc, char **argv) {
|
||||
mlir::registerDialect<mlir::AffineDialect>();
|
||||
mlir::registerDialect<mlir::LLVM::LLVMDialect>();
|
||||
mlir::registerDialect<mlir::loop::LoopOpsDialect>();
|
||||
mlir::registerDialect<mlir::scf::SCFDialect>();
|
||||
mlir::registerDialect<mlir::StandardOpsDialect>();
|
||||
|
||||
// Register transformation passes.
|
||||
|
|
|
@ -9,12 +9,12 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
|
||||
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
|
||||
#include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
|
||||
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
|
||||
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||||
#include "mlir/Dialect/LoopOps/LoopOps.h"
|
||||
#include "mlir/Dialect/SCF/SCF.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
git clone https://github.com/llvm/llvm-project.git
|
||||
# Check out a specific branch that is known to work with ONNX MLIR.
|
||||
cd llvm-project && git checkout 3ce0ad1b336e67a76d78ae7ff7d66fe127586620 && cd ..
|
||||
cd llvm-project && git checkout 0dc91bfd11e6cced0c46c1a25cc96edea0d8fc22 && cd ..
|
||||
|
|
|
@ -94,7 +94,7 @@ custom_builder_ops_list = ['Abs', 'Mul', 'Exp', 'ReduceSum', 'ReduceSumSquare',
|
|||
#a dictionary to add any special definition for an operation
|
||||
custom_definition_misc = dict([ ('Constant',
|
||||
''' let builders = [
|
||||
OpBuilder<"Builder *builder, OperationState &state, Attribute sparse_value, Attribute value", [{
|
||||
OpBuilder<"OpBuilder &builder, OperationState &state, Attribute sparse_value, Attribute value", [{
|
||||
if (value) {
|
||||
auto tensorType = value.getType();
|
||||
build(builder, state, tensorType, sparse_value, value);
|
||||
|
@ -430,9 +430,9 @@ def gen_op_def(schema):
|
|||
else:
|
||||
s += indent + 'let builders = [\n'
|
||||
# Custom builders with operands and attributes having a seperate parameter.
|
||||
# E.g. OpBuilder<"Builder *builder, OperationState &state, Value X, Value, Y, Attribute A", [{}]>
|
||||
# E.g. OpBuilder<"OpBuilder &builder, OperationState &state, Value X, Value, Y, Attribute A", [{}]>
|
||||
indent = inc_indent(indent)
|
||||
s += indent + 'OpBuilder<"Builder *builder, OperationState &state'
|
||||
s += indent + 'OpBuilder<"OpBuilder &builder, OperationState &state'
|
||||
operands_dict = get_operands_or_results(schema, is_input=True)
|
||||
for name, ty in operands_dict.items():
|
||||
s += ', {} {}'.format(tblgen_operand_type_to_cpp_type(ty),
|
||||
|
@ -454,8 +454,8 @@ def gen_op_def(schema):
|
|||
s += indent + '}]>,\n'
|
||||
|
||||
# Custom builders with all operands and attributes having aggregate parameters.
|
||||
# E.g. OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{}]>'
|
||||
s += indent + 'OpBuilder<"Builder *builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{\n'
|
||||
# E.g. OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{}]>'
|
||||
s += indent + 'OpBuilder<"OpBuilder &builder, OperationState &state, ValueRange operands, ArrayRef<NamedAttribute> attributes", [{\n'
|
||||
indent = inc_indent(indent)
|
||||
s += indent + 'auto elementType = operands[0].getType().cast<TensorType>().getElementType();\n'
|
||||
s += indent + 'std::vector<mlir::Type> outputTypes;\n'
|
||||
|
|
Loading…
Reference in New Issue