shape inference for pad with constant pads
This commit is contained in:
parent
937bbec265
commit
c3041bfb43
|
@ -2859,6 +2859,32 @@ ONNX PRelu operation
|
|||
|
||||
1. `Y`: memref of any type values or tensor of any type values
|
||||
|
||||
### onnx.PadConstantPad (ONNXPadConstantPadOp)
|
||||
ONNX Pad operation with constant padding value
|
||||
|
||||
#### Description:
|
||||
|
||||
|
||||
"this operation is introduced to handle situation"
|
||||
" in which the padding value and padding are constants"
|
||||
"They will become attributes."
|
||||
|
||||
#### Operands:
|
||||
|
||||
1. `data`: memref of any type values or tensor of any type values
|
||||
1. `constant_value`: memref of any type values or tensor of any type values
|
||||
|
||||
#### Attributes:
|
||||
|
||||
| Attribute | MLIR Type | Description |
|
||||
| :-------: | :-------: | ----------- |
|
||||
| `pads` | `ArrayAttr` | 64-bit integer array attribute attribute |
|
||||
| `mode` | `StringAttr` | string attribute attribute |
|
||||
|
||||
#### Results:
|
||||
|
||||
1. `output`: memref of any type values or tensor of any type values
|
||||
|
||||
### onnx.PadConstantValue (ONNXPadConstantValueOp)
|
||||
ONNX Pad operation with constant padding value
|
||||
|
||||
|
@ -2887,7 +2913,7 @@ ONNX Pad operation with constant padding value
|
|||
|
||||
1. `output`: memref of any type values or tensor of any type values
|
||||
|
||||
### onnx.PadConstatValuePad (ONNXPadConstantValuePadOp)
|
||||
### onnx.PadConstantValuePad (ONNXPadConstantValuePadOp)
|
||||
ONNX Pad operation with constant padding value
|
||||
|
||||
#### Description:
|
||||
|
|
|
@ -162,8 +162,22 @@ def ONNXPadConstantValueOp : ONNX_Op<"PadConstantValue",
|
|||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
}
|
||||
|
||||
def ONNXPadConstantValuePadOp : ONNX_Op<"PadConstatValuePad",
|
||||
[NoSideEffect ]> {
|
||||
def ONNXPadConstantPadOp : ONNX_Op<"PadConstantPad",
|
||||
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface> ]> {
|
||||
let summary = "ONNX Pad operation with constant padding value";
|
||||
let description = [{ "this operation is introduced to handle situation"
|
||||
" in which the padding value and padding are constants"
|
||||
"They will become attributes."
|
||||
}];
|
||||
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$data,
|
||||
AnyTypeOf<[AnyMemRef, AnyTensor]>:$constant_value,
|
||||
I64ArrayAttr:$pads,
|
||||
DefaultValuedAttr<StrAttr, "constant">:$mode);
|
||||
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$output);
|
||||
}
|
||||
|
||||
def ONNXPadConstantValuePadOp : ONNX_Op<"PadConstantValuePad",
|
||||
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface> ]> {
|
||||
let summary = "ONNX Pad operation with constant padding value";
|
||||
let description = [{ "this operation is introduced to handle situation"
|
||||
" in which the padding value and padding are constants"
|
||||
|
|
|
@ -1015,6 +1015,80 @@ void ONNXMaxPoolSingleOutOp::inferShapes() {
|
|||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// PadConstantPad
|
||||
|
||||
void ONNXPadConstantPadOp::inferShapes(){
|
||||
// Cannot infer shape if no shape exists.
|
||||
if (!data().getType().isa<RankedTensorType>())
|
||||
return;
|
||||
|
||||
// 1) get shape of input "data"
|
||||
auto dataTy = data().getType().cast<RankedTensorType>();
|
||||
auto dataShape = dataTy.getShape();
|
||||
auto dataRank = dataShape.size();
|
||||
|
||||
SmallVector<int64_t, 4> outputShape(dataShape.begin(), dataShape.end());
|
||||
auto padsOpt = pads();
|
||||
if (padsOpt) {
|
||||
auto padsArray = padsOpt.getValue();
|
||||
// pads consists of two entries for each spatial axis.
|
||||
if (padsArray.size() != 2 * dataRank)
|
||||
emitError("pads rank is not twice the spatial rank.");
|
||||
// fill in the actual values
|
||||
for (int i = 0; i < dataRank; ++i) {
|
||||
int64_t p1 = (padsArray[2*i]).cast<IntegerAttr>().getInt();
|
||||
if (p1 < 0)
|
||||
emitError("pads value must be nonnegative.");
|
||||
int64_t p2 = (padsArray[2*i+1]).cast<IntegerAttr>().getInt();
|
||||
if (p2 < 0)
|
||||
emitError("pads value must be nonnegative.");
|
||||
outputShape[i] += p1+p2;
|
||||
}
|
||||
getResult().setType(RankedTensorType::get(outputShape, dataTy.getElementType()));
|
||||
} else {
|
||||
emitError("pads attribute is not available.");
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// PadConstantValuePad
|
||||
|
||||
void ONNXPadConstantValuePadOp::inferShapes(){
|
||||
// Cannot infer shape if no shape exists.
|
||||
if (!data().getType().isa<RankedTensorType>())
|
||||
return;
|
||||
|
||||
// 1) get shape of input "data"
|
||||
auto dataTy = data().getType().cast<RankedTensorType>();
|
||||
auto dataShape = dataTy.getShape();
|
||||
auto dataRank = dataShape.size();
|
||||
|
||||
SmallVector<int64_t, 4> outputShape(dataShape.begin(), dataShape.end());
|
||||
auto padsOpt = pads();
|
||||
if (padsOpt) {
|
||||
auto padsArray = padsOpt.getValue();
|
||||
// pads consists of two entries for each spatial axis.
|
||||
if (padsArray.size() != 2 * dataRank)
|
||||
emitError("pads rank is not twice the spatial rank.");
|
||||
// fill in the actual values
|
||||
for (int i = 0; i < dataRank; ++i) {
|
||||
int64_t p1 = (padsArray[2*i]).cast<IntegerAttr>().getInt();
|
||||
if (p1 < 0)
|
||||
emitError("pads value must be nonnegative.");
|
||||
int64_t p2 = (padsArray[2*i+1]).cast<IntegerAttr>().getInt();
|
||||
if (p2 < 0)
|
||||
emitError("pads value must be nonnegative.");
|
||||
outputShape[i] += p1+p2;
|
||||
}
|
||||
getResult().setType(RankedTensorType::get(outputShape, dataTy.getElementType()));
|
||||
} else {
|
||||
emitError("pads attribute is not available.");
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Unsqueeze
|
||||
|
||||
void ONNXUnsqueezeOp::inferShapes() {
|
||||
|
|
|
@ -128,6 +128,8 @@ public:
|
|||
op->getName().getStringRef() != "onnx.Softmax" &&
|
||||
op->getName().getStringRef() != "onnx.Sqrt" &&
|
||||
op->getName().getStringRef() != "onnx.ConvNoBias" &&
|
||||
op->getName().getStringRef() != "onnx.PadConstantPad" &&
|
||||
op->getName().getStringRef() != "onnx.PadConstantValuePad" &&
|
||||
op->getName().getStringRef() != "onnx.Unsqueeze")
|
||||
return false;
|
||||
return llvm::any_of(op->getResultTypes(), [](Type result_type) {
|
||||
|
|
|
@ -87,7 +87,7 @@ func @test_reducesumsquare(%arg0 : tensor<?x?x?xf32>) -> tensor<*xf32> {
|
|||
|
||||
// CHECK-LABEL: @test_constant_pad(%{{.*}}: tensor<?x?xf32>) -> tensor<*xf32> {
|
||||
func @test_constant_pad(%arg0 : tensor<?x?xf32>) -> tensor<*xf32> {
|
||||
// CHECK-NEXT: [[SQUARE:%.+]] = "onnx.PadConstatValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<?x?xf32>) -> tensor<*xf32>
|
||||
// CHECK-NEXT: [[SQUARE:%.+]] = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<?x?xf32>) -> tensor<*xf32>
|
||||
%0 ="onnx.Constant"() {value=[0, 2, 0, 0]} : ()-> tensor<?xi64>
|
||||
%2 = "onnx.PadConstantValue"(%arg0, %0) {constant_value=0. : f32, mode = "constant"} : (tensor<?x?xf32>, tensor<?xi64>)-> tensor<*xf32>
|
||||
"std.return"(%2) : (tensor<*xf32>) -> ()
|
||||
|
|
|
@ -263,3 +263,23 @@ func @test_conv_no_bias_11(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7
|
|||
// CHECK-LABEL: test_conv_no_bias_11
|
||||
// CHECK: [[RES_ATTR:%.+]] = "onnx.ConvNoBias"(%arg0, %arg1) {auto_pad = "SAME_UPPER", dilations = [2, 3], group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>) -> tensor<1x5x32x64xf32>
|
||||
// CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32>
|
||||
|
||||
|
||||
/// Test PadConstantValuePad_1
|
||||
func @test_PadConstantValuePad_1(%arg0 : tensor<16x13xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<16x13xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_PadConstantValuePad_1
|
||||
// CHECK: [[RES:%.+]] = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 2, 0, 0]} : (tensor<16x13xf32>) -> tensor<18x13xf32>
|
||||
// CHECK: return [[RES]] : tensor<18x13xf32>
|
||||
|
||||
/// Test PadConstantPad_1
|
||||
func @test_PadConstantPad_1(%arg0 : tensor<16x13xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> {
|
||||
%0 = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 2, 3, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<*xf32>
|
||||
"std.return"(%0) : (tensor<*xf32>) -> ()
|
||||
}
|
||||
// CHECK-LABEL: test_PadConstantPad_1
|
||||
// CHECK: [[RES:%.+]] = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 2, 3, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<18x17xf32>
|
||||
// CHECK: return [[RES]] : tensor<18x17xf32>
|
||||
|
||||
|
|
Loading…
Reference in New Issue