[NFC] Change structure of conversion folder. (#96)
* Change structure of conversion folder. * Fix comments. Co-authored-by: Tian Jin <tjingrant@gmail.com>
This commit is contained in:
parent
32f08bcf0c
commit
ee3e140ddb
|
@ -62,7 +62,21 @@ target_include_directories(onnf_shape_inference
|
|||
target_link_libraries(onnf_shape_inference ${MLIRLibs})
|
||||
add_dependencies(onnf_shape_inference gen_krnl_ops)
|
||||
|
||||
add_library(onnf_lower_frontend conversion/onnx_to_krnl/convert_onnx_to_krnl.cpp)
|
||||
add_library(onnf_lower_frontend
|
||||
conversion/onnx_to_krnl/onnx_to_krnl_common.cpp
|
||||
conversion/onnx_to_krnl/onnx_to_krnl_common.hpp
|
||||
conversion/onnx_to_krnl/math/elementwise.cpp
|
||||
conversion/onnx_to_krnl/math/gemm.cpp
|
||||
conversion/onnx_to_krnl/math/matmul.cpp
|
||||
conversion/onnx_to_krnl/math/reduction.cpp
|
||||
conversion/onnx_to_krnl/math/softmax.cpp
|
||||
conversion/onnx_to_krnl/nn/conv.cpp
|
||||
conversion/onnx_to_krnl/nn/normalization.cpp
|
||||
conversion/onnx_to_krnl/tensor/identity.cpp
|
||||
conversion/onnx_to_krnl/tensor/reshape.cpp
|
||||
conversion/onnx_to_krnl/tensor/transpose.cpp
|
||||
conversion/onnx_to_krnl/tensor/unsqueeze.cpp
|
||||
conversion/onnx_to_krnl/convert_onnx_to_krnl.cpp)
|
||||
target_include_directories(onnf_lower_frontend
|
||||
PRIVATE ${ONNF_SRC_ROOT} ${ONNF_BIN_ROOT}
|
||||
${ONNF_SRC_ROOT})
|
||||
|
|
|
@ -8,404 +8,11 @@
|
|||
// Krnl IR and standard operations.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include <map>
|
||||
|
||||
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
||||
#include "mlir/Dialect/StandardOps/Ops.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/ADT/Sequence.h"
|
||||
|
||||
#include "src/dialect/krnl/krnl_helper.hpp"
|
||||
#include "src/dialect/krnl/krnl_ops.hpp"
|
||||
#include "src/dialect/onnx/onnx_ops.hpp"
|
||||
#include "src/pass/passes.hpp"
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FrontendToAffine RewritePatterns
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Check is all dimensions are known at compile time.
|
||||
static bool hasAllConstantDimensions(MemRefType type) {
|
||||
auto memRefShape = type.getShape();
|
||||
for (int i = 0; i < memRefShape.size(); ++i)
|
||||
if (memRefShape[i] < 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Get the corresponding MemRefType of a given TensorType/MemRefType.
|
||||
static MemRefType convertToMemRefType(Type type) {
|
||||
MemRefType memRefType;
|
||||
auto tensorType = type.dyn_cast<TensorType>();
|
||||
if (tensorType) {
|
||||
assert(tensorType.hasRank() && "expected only ranked shapes");
|
||||
memRefType =
|
||||
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
|
||||
} else {
|
||||
memRefType = type.dyn_cast<MemRefType>();
|
||||
}
|
||||
return memRefType;
|
||||
}
|
||||
|
||||
/// Insert an allocation and deallocation for the given MemRefType.
|
||||
static Value insertAllocAndDealloc(MemRefType type, Location loc,
|
||||
PatternRewriter &rewriter,
|
||||
bool insertDealloc,
|
||||
ArrayRef<Value> operands = {}) {
|
||||
// Put together alloc operands for any dynamic dimensions of the memref.
|
||||
AllocOp alloc;
|
||||
if (!operands.empty()) {
|
||||
auto memRefShape = type.getShape();
|
||||
auto rank = memRefShape.size();
|
||||
|
||||
std::map<int, Value> fromOperands;
|
||||
for (int reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
int memRefDimIdx = rank - 1 - reversedIdx;
|
||||
if (memRefShape[memRefDimIdx] < 0) { // unknown dimension
|
||||
Value maxDim = nullptr;
|
||||
for (int i = 0; i < operands.size(); i++) {
|
||||
auto operandShape =
|
||||
operands[i].getType().cast<MemRefType>().getShape();
|
||||
int operandDimIdx = operandShape.size() - 1 - reversedIdx;
|
||||
|
||||
if (operandDimIdx < 0)
|
||||
continue;
|
||||
|
||||
// In case of operations with broadcasting, the dimension of the
|
||||
// alloc result is the maximum size along each dimension of the
|
||||
// operands.
|
||||
auto operandDim =
|
||||
rewriter.create<DimOp>(loc, operands[i], operandDimIdx);
|
||||
if (maxDim) {
|
||||
auto maxCondition = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt,
|
||||
operandDim, maxDim);
|
||||
maxDim = rewriter.create<SelectOp>(loc, maxCondition, operandDim,
|
||||
maxDim);
|
||||
} else {
|
||||
maxDim = operandDim;
|
||||
}
|
||||
}
|
||||
fromOperands.insert(std::make_pair(memRefDimIdx, maxDim));
|
||||
}
|
||||
}
|
||||
|
||||
SmallVector<Value, 4> allocOperands;
|
||||
for (int i = 0; i < rank; ++i)
|
||||
if (memRefShape[i] < 0)
|
||||
allocOperands.push_back(fromOperands[i]);
|
||||
alloc = rewriter.create<AllocOp>(loc, type, allocOperands);
|
||||
} else {
|
||||
alloc = rewriter.create<AllocOp>(loc, type);
|
||||
}
|
||||
|
||||
// Make sure to allocate at the beginning of the block if
|
||||
// all dimensions are known.
|
||||
auto *parentBlock = alloc.getOperation()->getBlock();
|
||||
if (hasAllConstantDimensions(type))
|
||||
alloc.getOperation()->moveBefore(&parentBlock->front());
|
||||
|
||||
if (insertDealloc) {
|
||||
auto dealloc = rewriter.create<DeallocOp>(loc, alloc);
|
||||
dealloc.getOperation()->moveBefore(&parentBlock->back());
|
||||
}
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// Determine if current function returns the result value of the
|
||||
// current op being lowered. If it does then dealloc should not be
|
||||
// inserted.
|
||||
static bool checkInsertDealloc(Operation *currentOp) {
|
||||
auto parentBlock = currentOp->getBlock();
|
||||
|
||||
bool insertDealloc = true;
|
||||
parentBlock->walk([&insertDealloc, currentOp](ReturnOp op) {
|
||||
assert(currentOp->getNumResults() < 2 &&
|
||||
"No more than one result supported (for now).");
|
||||
// If there is at least one result to investigate.
|
||||
if (currentOp->getNumResults() > 0) {
|
||||
auto result = currentOp->getResult(0);
|
||||
for (const auto &operand : op.getOperands())
|
||||
if (operand == result)
|
||||
insertDealloc = false;
|
||||
}
|
||||
});
|
||||
|
||||
return insertDealloc;
|
||||
}
|
||||
|
||||
// Create a mapping from result type's dimensions to input type's dimensions,
|
||||
// given that the result type is the result of a reduction op over the input
|
||||
// type.
|
||||
std::map<int64_t, int64_t>
|
||||
getReductionMapping(MemRefType inputTy, ArrayRef<int64_t> axes, bool keepdims) {
|
||||
std::map<int64_t, int64_t> OutInDimMap;
|
||||
int64_t rank = inputTy.getRank();
|
||||
|
||||
// Mark reduction axes.
|
||||
std::vector<bool> isReductionAxis;
|
||||
for (decltype(rank) i = 0; i < rank; ++i) {
|
||||
if (std::find(axes.begin(), axes.end(), i) != axes.end())
|
||||
isReductionAxis.push_back(true);
|
||||
else
|
||||
isReductionAxis.push_back(false);
|
||||
}
|
||||
|
||||
for (decltype(rank) inIndex = 0, outIndex = 0; inIndex < rank; ++inIndex) {
|
||||
// If it is a reduction axis, there is no relationship among dimensions.
|
||||
if (isReductionAxis[inIndex]) {
|
||||
if (keepdims)
|
||||
outIndex++;
|
||||
} else {
|
||||
OutInDimMap.insert(std::make_pair(outIndex, inIndex));
|
||||
outIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
return OutInDimMap;
|
||||
}
|
||||
|
||||
// Add bounds associated with the op operand to the KRNL iteration pack.
|
||||
// Dynamic dimenions are supported.
|
||||
static void addDimensionToPack(ConversionPatternRewriter &rewriter,
|
||||
Location loc, KrnlIterateOperandPack &pack,
|
||||
Value operand, int index) {
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
if (shape[index] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operand, index).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(shape[index]);
|
||||
}
|
||||
}
|
||||
|
||||
// Function that defines the KRNL dialect loops and their respective
|
||||
// optimized version.
|
||||
static KrnlOptimizeLoopsOp
|
||||
emitOptimizedLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops, int64_t numLoops) {
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, numLoops);
|
||||
loops.reserve(numLoops);
|
||||
for (auto result : loopsOp.getResults())
|
||||
loops.push_back(result);
|
||||
|
||||
// Define optimized version of the loops.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, numLoops);
|
||||
optimizedLoops.reserve(numLoops);
|
||||
for (auto result : optimizedLoopsOp.getResults())
|
||||
optimizedLoops.push_back(result);
|
||||
|
||||
return optimizedLoopsOp;
|
||||
}
|
||||
|
||||
// Function that emits the loops and their optimized version.
|
||||
// The function returns a reference to the inner optimization block.
|
||||
static Block *defineLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops,
|
||||
int64_t numLoops) {
|
||||
KrnlOptimizeLoopsOp optimizedLoopsOp =
|
||||
emitOptimizedLoops(rewriter, loc, loops, optimizedLoops, numLoops);
|
||||
return &optimizedLoopsOp.region().front();
|
||||
}
|
||||
|
||||
// Function which emits a basic set of loops and optimized loops
|
||||
// for a given operation argument. A reference to the loop optimization
|
||||
// block is returned in the last argument of the function.
|
||||
static void emitKrnlLoopsAndIterationForOperand(
|
||||
ConversionPatternRewriter &rewriter, Location loc, Value operand,
|
||||
std::vector<Value> &originalLoops, KrnlOptimizeLoopsOp &optimizedLoopsOp,
|
||||
KrnlIterateOp &iterateOp) {
|
||||
// Operand shape.
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
|
||||
// Number of loops.
|
||||
int64_t rank = shape.size();
|
||||
|
||||
// Define loops and optimized loops.
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoopsOp =
|
||||
emitOptimizedLoops(rewriter, loc, originalLoops, optimizedLoops, rank);
|
||||
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest.
|
||||
for (int i = 0; i < rank; ++i)
|
||||
addDimensionToPack(rewriter, loc, pack, operand, i);
|
||||
|
||||
iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
}
|
||||
|
||||
unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
||||
auto elementType = memRefType.getElementType();
|
||||
|
||||
unsigned sizeInBits;
|
||||
if (elementType.isIntOrFloat()) {
|
||||
sizeInBits = elementType.getIntOrFloatBitWidth();
|
||||
} else {
|
||||
auto vectorType = elementType.cast<VectorType>();
|
||||
sizeInBits =
|
||||
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
||||
}
|
||||
return llvm::divideCeil(sizeInBits, 8);
|
||||
}
|
||||
|
||||
// Get run-time dimension information for unknown dimensions used for
|
||||
// broadcasting.
|
||||
std::map<int, std::map<int, Value>>
|
||||
getBroadcastedDimInfo(Location loc, ConversionPatternRewriter &rewriter,
|
||||
MemRefType memRefType, ArrayRef<Value> operands) {
|
||||
auto memRefShape = memRefType.getShape();
|
||||
int64_t rank = memRefShape.size();
|
||||
// For unknown dimensions, we need to get dimension values at runtime in
|
||||
// order to do broadcasting.
|
||||
std::map<int, std::map<int, Value>> DimInfo;
|
||||
// For each result dimension, compute the number of sharing operands.
|
||||
// Sharing operands are operands sharing the same index (counting from the
|
||||
// rightmost to the leftmost) for a given dimension.
|
||||
std::map<int, int> sharedDimCount;
|
||||
for (int reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
int dimIdx = rank - 1 - reversedIdx;
|
||||
sharedDimCount[dimIdx] = 0;
|
||||
for (int i = 0; i < operands.size(); ++i) {
|
||||
auto shape = operands[i].getType().cast<MemRefType>().getShape();
|
||||
if (reversedIdx <= shape.size() - 1)
|
||||
sharedDimCount[dimIdx]++;
|
||||
}
|
||||
}
|
||||
// An unknown dimension can have a value of 1 or N (N > 1).
|
||||
// If its value is 1, it is broadcasted dimension.
|
||||
// Otherwise, non-broadcasted dimension.
|
||||
// We only care about unknown dimensions whose number of sharing operands is
|
||||
// more than one, since they are potentially broadcasted dimensions.
|
||||
for (int i = 0; i < operands.size(); ++i) {
|
||||
std::map<int, Value> broadcastedDims;
|
||||
auto shape = operands[i].getType().cast<MemRefType>().getShape();
|
||||
int size = shape.size();
|
||||
for (int j = 0; j < shape.size(); ++j) {
|
||||
if (shape[j] < 0 and sharedDimCount[rank - size + j] > 1) {
|
||||
auto dim = rewriter.create<DimOp>(loc, operands[i], j).getResult();
|
||||
auto one = rewriter.create<ConstantIndexOp>(loc, 1);
|
||||
auto isBroadcasted =
|
||||
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, dim, one);
|
||||
broadcastedDims.insert(std::make_pair(j, isBroadcasted));
|
||||
}
|
||||
}
|
||||
DimInfo.insert(std::make_pair(i, broadcastedDims));
|
||||
}
|
||||
return DimInfo;
|
||||
}
|
||||
|
||||
// Extract induction variables that are used for broadcasting values of a
|
||||
// given operand.
|
||||
std::vector<Value>
|
||||
getLoopIVsForBroadcasting(Location loc, ConversionPatternRewriter &rewriter,
|
||||
ArrayRef<Value> loopIVs, Value operand,
|
||||
std::map<int, Value> broadcastedDims) {
|
||||
// `operand` must has a ranked type. This should have been checked by the
|
||||
// shape inference pass.
|
||||
auto operandShape = operand.getType().cast<MemRefType>().getShape();
|
||||
auto rank = operandShape.size();
|
||||
auto loopCount = loopIVs.size();
|
||||
|
||||
std::vector<Value> newLoopIVs;
|
||||
for (unsigned reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
auto dimIdx = rank - 1 - reversedIdx;
|
||||
auto loopIdx = loopCount - 1 - reversedIdx;
|
||||
if (operandShape[dimIdx] == 1) {
|
||||
// Broadcasted dimension
|
||||
auto zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
||||
newLoopIVs.insert(newLoopIVs.begin(), zero);
|
||||
} else if ((operandShape[dimIdx] == -1) &&
|
||||
(broadcastedDims.find(dimIdx) != broadcastedDims.end())) {
|
||||
// Unknown dimension, it can have a value of 1 or N (N > 1).
|
||||
// If its value is 1, it is broadcasted dimension.
|
||||
// Otherwise, non-broadcasted dimension.
|
||||
auto zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
||||
auto idx = rewriter.create<SelectOp>(loc, broadcastedDims[dimIdx], zero,
|
||||
loopIVs[loopIdx]);
|
||||
newLoopIVs.insert(newLoopIVs.begin(), idx);
|
||||
} else {
|
||||
// Non-broadcasted dimension
|
||||
newLoopIVs.insert(newLoopIVs.begin(), loopIVs[loopIdx]);
|
||||
}
|
||||
}
|
||||
return newLoopIVs;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// This is to get a scalar operation of a given type for a specific operation.
|
||||
template <typename Op>
|
||||
struct ScalarOp {
|
||||
using FOp = void;
|
||||
using IOp = void;
|
||||
};
|
||||
|
||||
template <typename FOp>
|
||||
using ScalarFOp = typename ScalarOp<FOp>::FOp;
|
||||
template <typename IOp>
|
||||
using ScalarIOp = typename ScalarOp<IOp>::IOp;
|
||||
|
||||
// Get the identity element of a operation.
|
||||
// Return NULL if the function does not have identity.
|
||||
template <typename DataType, typename Op>
|
||||
DataType getIdentityValue() {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This is used in the innermost loop of a KrnlIterateOp to insert computation
|
||||
// composed of one or many scalar ops.
|
||||
// Use template specialization for each of different ONNX operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
template <typename Op>
|
||||
Value mapToLowerScalarOp(Operation *op, ArrayRef<Type> result_types,
|
||||
ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) {
|
||||
auto loc = op->getLoc();
|
||||
Type element_type = operands.front().getType();
|
||||
if (element_type.isa<IntegerType>()) {
|
||||
return rewriter.create<ScalarIOp<Op>>(loc, result_types, operands,
|
||||
mlir::None);
|
||||
} else if (element_type.isa<FloatType>()) {
|
||||
return rewriter.create<ScalarFOp<Op>>(loc, result_types, operands,
|
||||
mlir::None);
|
||||
} else {
|
||||
emitError(loc, "unsupported element type");
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// We divide the operator lowering into different categories.
|
||||
// These categories are mostly similar to the operator categories in ONNX:
|
||||
// https://github.com/onnx/onnx/tree/master/onnx/defs.
|
||||
// Besides, it is better to put operators with the same computation pattern into
|
||||
// the same category, e.g. element-wise operators will belong to the elementwise
|
||||
// category.
|
||||
|
||||
// Math
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/math/elementwise.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/math/gemm.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/math/reduction.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/math/softmax.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/math/matmul.inc"
|
||||
// Tensor
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/tensor/identity.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/tensor/reshape.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/tensor/transpose.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/tensor/unsqueeze.inc"
|
||||
// Neural network
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/nn/conv.inc"
|
||||
#include "src/conversion/onnx_to_krnl/rewrite_patterns/nn/normalization.inc"
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// EntryPoint Op lowering to Krnl Entry Point.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -427,39 +34,6 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Conversion from Tensor type to the Standard dialect MemRef type.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct TensorTypeConverter : public TypeConverter {
|
||||
using TypeConverter::TypeConverter;
|
||||
|
||||
TensorTypeConverter() {
|
||||
addConversion(convertType);
|
||||
}
|
||||
|
||||
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
|
||||
if (auto type = convertToMemRefType(t)) {
|
||||
results.push_back(type);
|
||||
return success();
|
||||
}
|
||||
|
||||
results.push_back(t);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Return true if the inputs and outputs of the given function type are
|
||||
/// legal. [Taken from MLIR and adapted to only check the legality of the
|
||||
/// inputs. Once unranked results can be handled gracefully this
|
||||
/// override needs to be removed in favour of the original MLIR one.]
|
||||
bool isSignatureLegal(FunctionType funcType) {
|
||||
return llvm::all_of(funcType.getInputs(),
|
||||
[this](Type type) { return isLegal(type); });
|
||||
}
|
||||
};
|
||||
|
||||
} // end anonymous namespace.
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Frontend to Krnl Dialect lowering pass
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
//===----- elementwise.inc - Elementwise Ops ------------------------------===//
|
||||
//===----- elementwise.cpp - Elementwise Ops ------------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
template <>
|
||||
struct ScalarOp<ONNXAddOp> {
|
||||
using FOp = AddFOp;
|
|
@ -1,4 +1,4 @@
|
|||
//===----- gemm.inc - Lowering Gemm Op ------------------------------------===//
|
||||
//===----- gemm.cpp - Lowering Gemm Op ------------------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
template <typename GemmOp>
|
||||
struct ONNXGemmOpLowering : public ConversionPattern {
|
||||
ONNXGemmOpLowering(MLIRContext *ctx)
|
|
@ -1,4 +1,4 @@
|
|||
//===----- matmul.inc - Lowering Matmul Op --------------------------------===//
|
||||
//===----- matmul.cpp - Lowering Matmul Op --------------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXMatMulOpLowering : public ConversionPattern {
|
||||
ONNXMatMulOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXMatMulOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- reduction.inc - Lowering Reduction Ops -------------------------===//
|
||||
//===----- reduction.cpp - Lowering Reduction Ops -------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
// Identity values
|
||||
template <>
|
||||
float getIdentityValue<float, ONNXReduceMaxOp>(){
|
|
@ -1,4 +1,4 @@
|
|||
//===----- softmax.inc - Softmax Op ---------------------------------------===//
|
||||
//===----- softmax.cpp - Softmax Op ---------------------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXSoftmaxOpLowering : public ConversionPattern {
|
||||
ONNXSoftmaxOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXSoftmaxOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- conv.inc - Lowering Convolution Op -----------------------------===//
|
||||
//===----- conv.cpp - Lowering Convolution Op -----------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXConvNoBiasOpLowering : public ConversionPattern {
|
||||
ONNXConvNoBiasOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXConvNoBiasOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- normalization.inc - Lowering Normalization Ops -----------------===//
|
||||
//===----- normalization.cpp - Lowering Normalization Ops -----------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXBatchNormalizationTestModeOpLowering : public ConversionPattern {
|
||||
ONNXBatchNormalizationTestModeOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(
|
|
@ -0,0 +1,324 @@
|
|||
//====-- onnx_to_krnl_common.cpp - ONNX dialects to Krnl lowering ---------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
// =============================================================================
|
||||
//
|
||||
// This file contains common code shared by the functions performing the
|
||||
// lowering to the KRNL dialect.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
/// Check is all dimensions are known at compile time.
|
||||
bool hasAllConstantDimensions(MemRefType type) {
|
||||
auto memRefShape = type.getShape();
|
||||
for (int i = 0; i < memRefShape.size(); ++i)
|
||||
if (memRefShape[i] < 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Get the corresponding MemRefType of a given TensorType/MemRefType.
|
||||
MemRefType convertToMemRefType(Type type) {
|
||||
MemRefType memRefType;
|
||||
auto tensorType = type.dyn_cast<TensorType>();
|
||||
if (tensorType) {
|
||||
assert(tensorType.hasRank() && "expected only ranked shapes");
|
||||
memRefType =
|
||||
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
|
||||
} else {
|
||||
memRefType = type.dyn_cast<MemRefType>();
|
||||
}
|
||||
return memRefType;
|
||||
}
|
||||
|
||||
/// Insert an allocation and deallocation for the given MemRefType.
|
||||
Value insertAllocAndDealloc(MemRefType type, Location loc,
|
||||
PatternRewriter &rewriter,
|
||||
bool insertDealloc,
|
||||
ArrayRef<Value> operands) {
|
||||
// Put together alloc operands for any dynamic dimensions of the memref.
|
||||
AllocOp alloc;
|
||||
if (!operands.empty()) {
|
||||
auto memRefShape = type.getShape();
|
||||
auto rank = memRefShape.size();
|
||||
|
||||
std::map<int, Value> fromOperands;
|
||||
for (int reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
int memRefDimIdx = rank - 1 - reversedIdx;
|
||||
if (memRefShape[memRefDimIdx] < 0) { // unknown dimension
|
||||
Value maxDim = nullptr;
|
||||
for (int i = 0; i < operands.size(); i++) {
|
||||
auto operandShape =
|
||||
operands[i].getType().cast<MemRefType>().getShape();
|
||||
int operandDimIdx = operandShape.size() - 1 - reversedIdx;
|
||||
|
||||
if (operandDimIdx < 0)
|
||||
continue;
|
||||
|
||||
// In case of operations with broadcasting, the dimension of the
|
||||
// alloc result is the maximum size along each dimension of the
|
||||
// operands.
|
||||
auto operandDim =
|
||||
rewriter.create<DimOp>(loc, operands[i], operandDimIdx);
|
||||
if (maxDim) {
|
||||
auto maxCondition = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt,
|
||||
operandDim, maxDim);
|
||||
maxDim = rewriter.create<SelectOp>(loc, maxCondition, operandDim,
|
||||
maxDim);
|
||||
} else {
|
||||
maxDim = operandDim;
|
||||
}
|
||||
}
|
||||
fromOperands.insert(std::make_pair(memRefDimIdx, maxDim));
|
||||
}
|
||||
}
|
||||
|
||||
SmallVector<Value, 4> allocOperands;
|
||||
for (int i = 0; i < rank; ++i)
|
||||
if (memRefShape[i] < 0)
|
||||
allocOperands.push_back(fromOperands[i]);
|
||||
alloc = rewriter.create<AllocOp>(loc, type, allocOperands);
|
||||
} else {
|
||||
alloc = rewriter.create<AllocOp>(loc, type);
|
||||
}
|
||||
|
||||
// Make sure to allocate at the beginning of the block if
|
||||
// all dimensions are known.
|
||||
auto *parentBlock = alloc.getOperation()->getBlock();
|
||||
if (hasAllConstantDimensions(type))
|
||||
alloc.getOperation()->moveBefore(&parentBlock->front());
|
||||
|
||||
if (insertDealloc) {
|
||||
auto dealloc = rewriter.create<DeallocOp>(loc, alloc);
|
||||
dealloc.getOperation()->moveBefore(&parentBlock->back());
|
||||
}
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// Determine if current function returns the result value of the
|
||||
// current op being lowered. If it does then dealloc should not be
|
||||
// inserted.
|
||||
bool checkInsertDealloc(Operation *currentOp) {
|
||||
auto parentBlock = currentOp->getBlock();
|
||||
|
||||
bool insertDealloc = true;
|
||||
parentBlock->walk([&insertDealloc, currentOp](ReturnOp op) {
|
||||
assert(currentOp->getNumResults() < 2 &&
|
||||
"No more than one result supported (for now).");
|
||||
// If there is at least one result to investigate.
|
||||
if (currentOp->getNumResults() > 0) {
|
||||
auto result = currentOp->getResult(0);
|
||||
for (const auto &operand : op.getOperands())
|
||||
if (operand == result)
|
||||
insertDealloc = false;
|
||||
}
|
||||
});
|
||||
|
||||
return insertDealloc;
|
||||
}
|
||||
|
||||
// Create a mapping from result type's dimensions to input type's dimensions,
|
||||
// given that the result type is the result of a reduction op over the input
|
||||
// type.
|
||||
std::map<int64_t, int64_t>
|
||||
getReductionMapping(MemRefType inputTy, ArrayRef<int64_t> axes, bool keepdims) {
|
||||
std::map<int64_t, int64_t> OutInDimMap;
|
||||
int64_t rank = inputTy.getRank();
|
||||
|
||||
// Mark reduction axes.
|
||||
std::vector<bool> isReductionAxis;
|
||||
for (decltype(rank) i = 0; i < rank; ++i) {
|
||||
if (std::find(axes.begin(), axes.end(), i) != axes.end())
|
||||
isReductionAxis.push_back(true);
|
||||
else
|
||||
isReductionAxis.push_back(false);
|
||||
}
|
||||
|
||||
for (decltype(rank) inIndex = 0, outIndex = 0; inIndex < rank; ++inIndex) {
|
||||
// If it is a reduction axis, there is no relationship among dimensions.
|
||||
if (isReductionAxis[inIndex]) {
|
||||
if (keepdims)
|
||||
outIndex++;
|
||||
} else {
|
||||
OutInDimMap.insert(std::make_pair(outIndex, inIndex));
|
||||
outIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
return OutInDimMap;
|
||||
}
|
||||
|
||||
// Add bounds associated with the op operand to the KRNL iteration pack.
|
||||
// Dynamic dimenions are supported.
|
||||
void addDimensionToPack(ConversionPatternRewriter &rewriter,
|
||||
Location loc, KrnlIterateOperandPack &pack,
|
||||
Value operand, int index) {
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
if (shape[index] < 0) {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushOperandBound(
|
||||
rewriter.create<DimOp>(loc, operand, index).getResult());
|
||||
} else {
|
||||
pack.pushConstantBound(0);
|
||||
pack.pushConstantBound(shape[index]);
|
||||
}
|
||||
}
|
||||
|
||||
// Function that defines the KRNL dialect loops and their respective
|
||||
// optimized version.
|
||||
KrnlOptimizeLoopsOp
|
||||
emitOptimizedLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops, int64_t numLoops) {
|
||||
// Define loops.
|
||||
auto loopsOp = rewriter.create<KrnlDefineLoopsOp>(loc, numLoops);
|
||||
loops.reserve(numLoops);
|
||||
for (auto result : loopsOp.getResults())
|
||||
loops.push_back(result);
|
||||
|
||||
// Define optimized version of the loops.
|
||||
auto optimizedLoopsOp = rewriter.create<KrnlOptimizeLoopsOp>(loc, numLoops);
|
||||
optimizedLoops.reserve(numLoops);
|
||||
for (auto result : optimizedLoopsOp.getResults())
|
||||
optimizedLoops.push_back(result);
|
||||
|
||||
return optimizedLoopsOp;
|
||||
}
|
||||
|
||||
// Function that emits the loops and their optimized version.
|
||||
// The function returns a reference to the inner optimization block.
|
||||
Block *defineLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops,
|
||||
int64_t numLoops) {
|
||||
KrnlOptimizeLoopsOp optimizedLoopsOp =
|
||||
emitOptimizedLoops(rewriter, loc, loops, optimizedLoops, numLoops);
|
||||
return &optimizedLoopsOp.region().front();
|
||||
}
|
||||
|
||||
// Function which emits a basic set of loops and optimized loops
|
||||
// for a given operation argument. A reference to the loop optimization
|
||||
// block is returned in the last argument of the function.
|
||||
void emitKrnlLoopsAndIterationForOperand(
|
||||
ConversionPatternRewriter &rewriter, Location loc, Value operand,
|
||||
std::vector<Value> &originalLoops, KrnlOptimizeLoopsOp &optimizedLoopsOp,
|
||||
KrnlIterateOp &iterateOp) {
|
||||
// Operand shape.
|
||||
auto shape = operand.getType().cast<MemRefType>().getShape();
|
||||
|
||||
// Number of loops.
|
||||
int64_t rank = shape.size();
|
||||
|
||||
// Define loops and optimized loops.
|
||||
std::vector<Value> optimizedLoops;
|
||||
optimizedLoopsOp =
|
||||
emitOptimizedLoops(rewriter, loc, originalLoops, optimizedLoops, rank);
|
||||
|
||||
KrnlIterateOperandPack pack(rewriter, originalLoops, optimizedLoops);
|
||||
// Iterate over the loop nest.
|
||||
for (int i = 0; i < rank; ++i)
|
||||
addDimensionToPack(rewriter, loc, pack, operand, i);
|
||||
|
||||
iterateOp = rewriter.create<KrnlIterateOp>(loc, pack);
|
||||
}
|
||||
|
||||
unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
||||
auto elementType = memRefType.getElementType();
|
||||
|
||||
unsigned sizeInBits;
|
||||
if (elementType.isIntOrFloat()) {
|
||||
sizeInBits = elementType.getIntOrFloatBitWidth();
|
||||
} else {
|
||||
auto vectorType = elementType.cast<VectorType>();
|
||||
sizeInBits =
|
||||
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
||||
}
|
||||
return llvm::divideCeil(sizeInBits, 8);
|
||||
}
|
||||
|
||||
// Get run-time dimension information for unknown dimensions used for
|
||||
// broadcasting.
|
||||
std::map<int, std::map<int, Value>>
|
||||
getBroadcastedDimInfo(Location loc, ConversionPatternRewriter &rewriter,
|
||||
MemRefType memRefType, ArrayRef<Value> operands) {
|
||||
auto memRefShape = memRefType.getShape();
|
||||
int64_t rank = memRefShape.size();
|
||||
// For unknown dimensions, we need to get dimension values at runtime in
|
||||
// order to do broadcasting.
|
||||
std::map<int, std::map<int, Value>> DimInfo;
|
||||
// For each result dimension, compute the number of sharing operands.
|
||||
// Sharing operands are operands sharing the same index (counting from the
|
||||
// rightmost to the leftmost) for a given dimension.
|
||||
std::map<int, int> sharedDimCount;
|
||||
for (int reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
int dimIdx = rank - 1 - reversedIdx;
|
||||
sharedDimCount[dimIdx] = 0;
|
||||
for (int i = 0; i < operands.size(); ++i) {
|
||||
auto shape = operands[i].getType().cast<MemRefType>().getShape();
|
||||
if (reversedIdx <= shape.size() - 1)
|
||||
sharedDimCount[dimIdx]++;
|
||||
}
|
||||
}
|
||||
// An unknown dimension can have a value of 1 or N (N > 1).
|
||||
// If its value is 1, it is broadcasted dimension.
|
||||
// Otherwise, non-broadcasted dimension.
|
||||
// We only care about unknown dimensions whose number of sharing operands is
|
||||
// more than one, since they are potentially broadcasted dimensions.
|
||||
for (int i = 0; i < operands.size(); ++i) {
|
||||
std::map<int, Value> broadcastedDims;
|
||||
auto shape = operands[i].getType().cast<MemRefType>().getShape();
|
||||
int size = shape.size();
|
||||
for (int j = 0; j < shape.size(); ++j) {
|
||||
if (shape[j] < 0 and sharedDimCount[rank - size + j] > 1) {
|
||||
auto dim = rewriter.create<DimOp>(loc, operands[i], j).getResult();
|
||||
auto one = rewriter.create<ConstantIndexOp>(loc, 1);
|
||||
auto isBroadcasted =
|
||||
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, dim, one);
|
||||
broadcastedDims.insert(std::make_pair(j, isBroadcasted));
|
||||
}
|
||||
}
|
||||
DimInfo.insert(std::make_pair(i, broadcastedDims));
|
||||
}
|
||||
return DimInfo;
|
||||
}
|
||||
|
||||
// Extract induction variables that are used for broadcasting values of a
|
||||
// given operand.
|
||||
std::vector<Value>
|
||||
getLoopIVsForBroadcasting(Location loc, ConversionPatternRewriter &rewriter,
|
||||
ArrayRef<Value> loopIVs, Value operand,
|
||||
std::map<int, Value> broadcastedDims) {
|
||||
// `operand` must has a ranked type. This should have been checked by the
|
||||
// shape inference pass.
|
||||
auto operandShape = operand.getType().cast<MemRefType>().getShape();
|
||||
auto rank = operandShape.size();
|
||||
auto loopCount = loopIVs.size();
|
||||
|
||||
std::vector<Value> newLoopIVs;
|
||||
for (unsigned reversedIdx = 0; reversedIdx < rank; ++reversedIdx) {
|
||||
auto dimIdx = rank - 1 - reversedIdx;
|
||||
auto loopIdx = loopCount - 1 - reversedIdx;
|
||||
if (operandShape[dimIdx] == 1) {
|
||||
// Broadcasted dimension
|
||||
auto zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
||||
newLoopIVs.insert(newLoopIVs.begin(), zero);
|
||||
} else if ((operandShape[dimIdx] == -1) &&
|
||||
(broadcastedDims.find(dimIdx) != broadcastedDims.end())) {
|
||||
// Unknown dimension, it can have a value of 1 or N (N > 1).
|
||||
// If its value is 1, it is broadcasted dimension.
|
||||
// Otherwise, non-broadcasted dimension.
|
||||
auto zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
||||
auto idx = rewriter.create<SelectOp>(loc, broadcastedDims[dimIdx], zero,
|
||||
loopIVs[loopIdx]);
|
||||
newLoopIVs.insert(newLoopIVs.begin(), idx);
|
||||
} else {
|
||||
// Non-broadcasted dimension
|
||||
newLoopIVs.insert(newLoopIVs.begin(), loopIVs[loopIdx]);
|
||||
}
|
||||
}
|
||||
return newLoopIVs;
|
||||
}
|
|
@ -0,0 +1,217 @@
|
|||
//====-- onnx_to_krnl_common.hpp - ONNX dialects to Krnl lowering ---------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
// =============================================================================
|
||||
//
|
||||
// This file contains common code shared by the functions performing the
|
||||
// lowering to the KRNL dialect.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
||||
#include "mlir/Dialect/StandardOps/Ops.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/ADT/Sequence.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
|
||||
#include "src/dialect/krnl/krnl_helper.hpp"
|
||||
#include "src/dialect/krnl/krnl_ops.hpp"
|
||||
#include "src/dialect/onnx/onnx_ops.hpp"
|
||||
#include "src/pass/passes.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Common functions used when lowering the ONNX frontend dialect to KRNL.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Check is all dimensions are known at compile time.
|
||||
bool hasAllConstantDimensions(MemRefType type);
|
||||
|
||||
/// Get the corresponding MemRefType of a given TensorType/MemRefType.
|
||||
MemRefType convertToMemRefType(Type type);
|
||||
|
||||
/// Insert an allocation and deallocation for the given MemRefType.
|
||||
Value insertAllocAndDealloc(MemRefType type, Location loc,
|
||||
PatternRewriter &rewriter,
|
||||
bool insertDealloc,
|
||||
ArrayRef<Value> operands = {});
|
||||
|
||||
// Determine if current function returns the result value of the
|
||||
// current op being lowered. If it does then dealloc should not be
|
||||
// inserted.
|
||||
bool checkInsertDealloc(Operation *currentOp);
|
||||
|
||||
// Create a mapping from result type's dimensions to input type's dimensions,
|
||||
// given that the result type is the result of a reduction op over the input
|
||||
// type.
|
||||
std::map<int64_t, int64_t>
|
||||
getReductionMapping(MemRefType inputTy, ArrayRef<int64_t> axes, bool keepdims);
|
||||
|
||||
// Add bounds associated with the op operand to the KRNL iteration pack.
|
||||
// Dynamic dimenions are supported.
|
||||
void addDimensionToPack(ConversionPatternRewriter &rewriter,
|
||||
Location loc, KrnlIterateOperandPack &pack,
|
||||
Value operand, int index);
|
||||
|
||||
// Function that defines the KRNL dialect loops and their respective
|
||||
// optimized version.
|
||||
KrnlOptimizeLoopsOp
|
||||
emitOptimizedLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops, int64_t numLoops);
|
||||
|
||||
// Function that emits the loops and their optimized version.
|
||||
// The function returns a reference to the inner optimization block.
|
||||
Block *defineLoops(ConversionPatternRewriter &rewriter, Location loc,
|
||||
std::vector<Value> &loops,
|
||||
std::vector<Value> &optimizedLoops,
|
||||
int64_t numLoops);
|
||||
|
||||
// Function which emits a basic set of loops and optimized loops
|
||||
// for a given operation argument. A reference to the loop optimization
|
||||
// block is returned in the last argument of the function.
|
||||
void emitKrnlLoopsAndIterationForOperand(
|
||||
ConversionPatternRewriter &rewriter, Location loc, Value operand,
|
||||
std::vector<Value> &originalLoops, KrnlOptimizeLoopsOp &optimizedLoopsOp,
|
||||
KrnlIterateOp &iterateOp);
|
||||
|
||||
unsigned getMemRefEltSizeInBytes(MemRefType memRefType);
|
||||
|
||||
// Get run-time dimension information for unknown dimensions used for
|
||||
// broadcasting.
|
||||
std::map<int, std::map<int, Value>>
|
||||
getBroadcastedDimInfo(Location loc, ConversionPatternRewriter &rewriter,
|
||||
MemRefType memRefType, ArrayRef<Value> operands);
|
||||
|
||||
// Extract induction variables that are used for broadcasting values of a
|
||||
// given operand.
|
||||
std::vector<Value>
|
||||
getLoopIVsForBroadcasting(Location loc, ConversionPatternRewriter &rewriter,
|
||||
ArrayRef<Value> loopIVs, Value operand,
|
||||
std::map<int, Value> broadcastedDims);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This is to get a scalar operation of a given type for a specific operation.
|
||||
//===----------------------------------------------------------------------===//
|
||||
template <typename Op>
|
||||
struct ScalarOp {
|
||||
using FOp = void;
|
||||
using IOp = void;
|
||||
};
|
||||
|
||||
template <typename FOp>
|
||||
using ScalarFOp = typename ScalarOp<FOp>::FOp;
|
||||
template <typename IOp>
|
||||
using ScalarIOp = typename ScalarOp<IOp>::IOp;
|
||||
|
||||
// Get the identity element of a operation.
|
||||
// Return NULL if the function does not have identity.
|
||||
template <typename DataType, typename Op>
|
||||
DataType getIdentityValue() {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This is used in the innermost loop of a KrnlIterateOp to insert computation
|
||||
// composed of one or many scalar ops.
|
||||
// Use template specialization for each of different ONNX operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
template <typename Op>
|
||||
Value mapToLowerScalarOp(Operation *op, ArrayRef<Type> result_types,
|
||||
ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) {
|
||||
auto loc = op->getLoc();
|
||||
Type element_type = operands.front().getType();
|
||||
if (element_type.isa<IntegerType>()) {
|
||||
return rewriter.create<ScalarIOp<Op>>(loc, result_types, operands,
|
||||
mlir::None);
|
||||
} else if (element_type.isa<FloatType>()) {
|
||||
return rewriter.create<ScalarFOp<Op>>(loc, result_types, operands,
|
||||
mlir::None);
|
||||
} else {
|
||||
emitError(loc, "unsupported element type");
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Conversion from Tensor type to the Standard dialect MemRef type.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct TensorTypeConverter : public TypeConverter {
|
||||
using TypeConverter::TypeConverter;
|
||||
|
||||
TensorTypeConverter() {
|
||||
addConversion(convertType);
|
||||
}
|
||||
|
||||
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
|
||||
if (auto type = convertToMemRefType(t)) {
|
||||
results.push_back(type);
|
||||
return success();
|
||||
}
|
||||
|
||||
results.push_back(t);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Return true if the inputs and outputs of the given function type are
|
||||
/// legal. [Taken from MLIR and adapted to only check the legality of the
|
||||
/// inputs. Once unranked results can be handled gracefully this
|
||||
/// override needs to be removed in favour of the original MLIR one.]
|
||||
bool isSignatureLegal(FunctionType funcType) {
|
||||
return llvm::all_of(funcType.getInputs(),
|
||||
[this](Type type) { return isLegal(type); });
|
||||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Functions to add lowering patterns for frontend operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// `math` directory methods:
|
||||
|
||||
void populateLoweringONNXElementwiseOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXGemmOpPattern(OwningRewritePatternList &patterns,
|
||||
MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXMatMulOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXReductionOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXSoftmaxOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
// `nn` directory methods:
|
||||
|
||||
void populateLoweringONNXConvOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXNormalizationOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
// `tensor` directory methods:
|
||||
|
||||
void populateLoweringONNXUnsqueezeOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXTransposeOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXReshapeOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
||||
|
||||
void populateLoweringONNXIdentityOpPattern(
|
||||
OwningRewritePatternList &patterns, MLIRContext *ctx);
|
|
@ -1,4 +1,4 @@
|
|||
//===----- identity.inc - Lowering Identity Op ----------------------------===//
|
||||
//===----- identity.cpp - Lowering Identity Op ----------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXIdentityOpLowering : public ConversionPattern {
|
||||
ONNXIdentityOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXIdentityOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- reshape.inc - Lowering Reshape Op ------------------------------===//
|
||||
//===----- reshape.cpp - Lowering Reshape Op ------------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXReshapeOpLowering : public ConversionPattern {
|
||||
ONNXReshapeOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXReshapeOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- transpose.inc - Lowering Transpose Op --------------------------===//
|
||||
//===----- transpose.cpp - Lowering Transpose Op --------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXTransposeOpLowering : public ConversionPattern {
|
||||
ONNXTransposeOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXTransposeOp::getOperationName(), 1, ctx) {}
|
|
@ -1,4 +1,4 @@
|
|||
//===----- unsqueeze.inc - Lowering Unsqueeze Op --------------------------===//
|
||||
//===----- unsqueeze.cpp - Lowering Unsqueeze Op --------------------------===//
|
||||
//
|
||||
// Copyright 2019 The IBM Research Authors.
|
||||
//
|
||||
|
@ -8,6 +8,10 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
struct ONNXUnsqueezeOpLowering : public ConversionPattern {
|
||||
ONNXUnsqueezeOpLowering(MLIRContext *ctx)
|
||||
: ConversionPattern(mlir::ONNXUnsqueezeOp::getOperationName(), 1, ctx) {}
|
Loading…
Reference in New Issue