* Create a template for pooling and add support for AveragePool
* Edit MLIR tests for MaxPool according to the new lowering template for pooling
* Dealloc temporary variables
* Support count_include_pad for AveragePool
* Add MLIR tests for AveragePool lowering
* Make changes according to Tian's comments
* Push AffineMap as upper bound for KrnlIterateOp
* Test AffineMap to use in Pooling
* Replace the old implementaion by a new one using AffineMap
* Fix the computation when dilations are non-unit
* Clean up the old code
* Remove AveragePool from Canonicalization pass
* Fix computing the end indices of a filter window
* Refactor the code for pooling
* Revise pushAffineMapBound
* Add MLIR tests
* Remove unused functions
* Fix check-onnx-backend build on x86 Linux. (#91)
* Add the split marker to test files (#90)
Co-authored-by: Tian Jin <tjingrant@gmail.com>
Co-authored-by: gongsu832 <gong_su@hotmail.com>
Co-authored-by: Tian Jin <tjingrant@gmail.com>
* implement shape inference for concat
* better checking of axis being concatenated: constant values only
* lowering of Concat with lit and backend tests
* fixes
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Support dilations and enable e2e tests
* Fix allocating memory for dynamic shape
* Edit comments
* Do dilation by computing an offset from kernel index
* Correct dilation formula, add an example of out-of-bound, and add a test for dilation
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Lower MaxPoolSingleOutOp to Krnl dialect
* Edit comments
* Update changes according to the new folder structure
* Add MLIR tests
* Support ceil_mode
* Merge the first two krnl loops into one krnl loop; remove attribute checks
* Dynamically allocate memory for the result if the result has unknown dimensions
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Add ONNXBatchNormalizationTestModeOp and its shape inference
* Lower batchnormalization test mode
* re-use scale, bias, mean, and variance
* Add MLIR tests
* Add e2e tests
* fix typos
* Fix a bug in MLIR tests
* Change type from int to int64_t for indices
* Uncomment e2e tests due to segmentation fault
* Uncomment e2e tests due to segmentation fault
* Revise the code
* [Tian] Fix segmentation fault in e2e tests
* Re-generate onnx.md to include BatchNormalizationTestModeOp
* Reverse an unintentional change
* Fix some typos in comments
* Use convertToMemRefType from the master branch
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Allocate memory for matmul's result
* Group cases
* Add support of N-D x N-D, N>=2
* Revise createIterateOperandPack
* Add 1-D x 1-D
* Add 1-D x N-D
* Add MLIR tests
* Change variable names
* Change type from int to int64_t for indices
* Change variable names
* Change int64_t back to int
* Change int64_t back to int
* Change int64_t back to int
* Use decltype
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
Co-authored-by: Tian Jin <tjingrant@gmail.com>
* Shape inference for reduction
* Lower ReduceSum
* Support list-like attributes
* Add ReduceMax, ReduceMin, ReduceProd
* Add tests
* Emit errors for unsupported types
* Typos
* Add backend test
* Fix axis computation
* Update the use of attributes
* Use SmallVector
* Address stylistic comments
* Change type from int to int64_t for indices
* Change type from int to int64_t for indices
* Ensure data shape is at least 4.
* First version of convolution.
* Simplify code for KRNL lowering.
* Add test without padding or strides.
* Refactor code for lowering frontend operations to KRNL dialect.
* Add test for conv with no bias and no padding.
* Add test with group greater than one.
* Address comment.
* Support lowering of SignOp
* Fixed test code for signop of integer input
* Inserted Sigh and Reciprocal in SharingWork.md (Reciprocal is for past commit 7e3f96e)
* Added test for Sign Op
* Fixed minus_one -> minusOne
* Fixed test for signop
* Initial implementation
* Support transposing inputs
* Revise unidirectional broadcasting and unknown dimensions
* Revise gemm
* Add testcase
* Rename some variables
* Update SharingWork.md
* Change from the use of Value* to Value
* Insert deallocation
* Initilize the output matrix and fix wrong computation
* Add end-to-end testcases
* Edit lowering tests
* Change attribute names
* Use emplace_push for SmallVector
* Use the new way of getting attributes
* Revise the use of attributes
* Check the bias's shape
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Infer shape for Unsqueeze
* Lower Unsqueeze
* Revise
* Turn off backend tests
* Compute tensorSize for static shape
* Compute tensorSize with unknown dims
* Edit tests
* Update the use of attributes
* Add e2e tests
* Use SmallVector
* Remove return
* Check whether the operand is ranked or not
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Initial lowering of KrnlSqrtOp
* Fix errors and add a testcase
* typos
* Add the MLIR example
* Restore doc/doc_check/CMakeLists.txt
* Clean the code
* Edit comments
* Remove redundant parts
* Chang the use of -> to .
* Add a test for f64
* Support ONNXSqrtOp
* Fix indentation
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* add attributes of Op into parameters
* fix rewrite rule for GemmOp with attributes
* use I64Attr instead of I32Attr and modify test cases for the changes in attributes
* add output name (prefixed with o_) to Op definition
* update shape inference for the new attributes
* Support Softplus and Softsign operations
* Add the default shape inference for the transposition operation.
* Fix conflict with master
* Fix conflict with master branch
* Add test for softplus and softsign in test/backend/test.py
* Re-enable Reciprocal tests.
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
Co-authored-by: Tian Jin <tjingrant@gmail.com>
* change the read-in of attribute, using variant
* Use backported variant.
* Reduce code duplication.
* 1. Make array attribute parsing more clear.
2. int -> int64_t.
* 1. Fix how array attributes are imported.
* 1. Fix clang-tidy warnings.
* 1. Nit: fix clang-tidy warnings.
* Fix MaxPool node construction.
* Fix call to MaxPool.
* Comment out backend tests that fail.
* Add path to variant submodule to enable include file detection.
* Allow unused argument to avoid special casing generator.
* Address attribute related e2e test failures for Hard sigmoid,Elu,LeakyRelu,Selu,Softmax
Co-authored-by: chentong319 <chentong@us.ibm.com>
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
* Rebase
* Use max normalization
* Handle axis
* Add tests
* Update SharingWork.md
* Remove redundant spaces
* Format code
* Rebase
* Change from the use of Value* to Value
* Add end-to-end tests
Co-authored-by: Tian Jin <tjingrant@gmail.com>
* Add broadcasting support for elementwise operations
* Remove MLIRDialect from MLIRWholeArchiveLibs
* Rewrite getLoopIVsForBroadcasting
* Compute dimensions for allocating result memory
* Compute dimensions for allocating result memory (revised)
* Use static dimension for element-wise operation testcases
* Add a test for addition with broadcasting
* Missed Traits.h when merging
* Revise
* Update SharedWork.md
* Broadcasting for variadic operations
* Edit comments
* Update SharedWork.md
* Reorganize the code
* Add CHECK-LABEL for test_add_with_broadcasting
* Add reshape op handling.
* Lower reshape to KRNL dialect.
* Add comments.
* Propagate reshape to KRNL IR.
* Lower KRNL reshape to affine and standard ops level dialects.
* Add lowering of reshape operation to Krnl and LLVM Dialects.
* Add test for LLVM IR dialect output for reshape.
* Fix rebase.
* Fix test variable.
* Emit errors during reshape shape inference. Address other reviewer comments.
* Lower ONNXSumOp
* Add inferShapes() and test cases
* Load the first operand to the result
* Update SharingWork.md
* Update SharingWork.md
* Update SharingWork.md
* Add support for Max, Min
* Pass operation instead of location to mapToLowerScalarOp
* Add support for Elu, Selu, LeakyRelu, HardSigmoid
* Add test cases
* Update SharingWork.md
* Rewrite the part of lowering variadic ops and use it for binary ops
* Use two diffenrent templates for Unary and Variadic Ops
* Revise the code