* Rebase
* Use max normalization
* Handle axis
* Add tests
* Update SharingWork.md
* Remove redundant spaces
* Format code
* Rebase
* Change from the use of Value* to Value
* Add end-to-end tests
Co-authored-by: Tian Jin <tjingrant@gmail.com>
* Sync with latest MLIR.
* Enable ONNX backend tests as a means to test ONNF lowering end-to-end.
* Install ONNX using quiet mode.
* Remove debug comments.
* Install ONNX from third_party/onnx.
* Check python version and fix pip command for installing ONNX.
* Using --user install option to prevent permission denied.
* Remove unused imports.
* Try using stock ONNX pip package as there are more tests in them.
* Pip got stuck building wheels, try sudo.
* Use verbose install to debug.
* Invalidate cache to build LLVM tools.
* Fix mlir installation script location.
* Debug to locate ONNF.
* Sanity check.
* Check out ONNF code first.
* Use verbose LIT output.
* 1. Update documentation to always use verbose LIT.
2. Update krnl ops to reflect new affine map attribute syntax.
* See if conda exists
* Install ONNX by manually cloning the repo.
* Install cmake first.
* Using sudo priviledge when installing.
* Limit build parallelism.
* Limit parallelism.
* Larger memory.
* Install onnx package with pip.
* Build MLIR tools.
* Invalidate cache.
* Compile model.so with -fPIC.
* Remove module dump to get concise debug output.
* Print command before executing.
* Use quiet install mode to reduce logging.
* Use -relocation-model=pic to generate position independent code.
* 1. Remove MAKEFLAGS because now buildbot has enough memory.
2. Run DocCheck as a last step.
* 1. Add verbose mode for backtend test.
* When dumping to LLVM bitcode, do not dump module IR, but print a message indicating that bitcode has been written to disk.
* Do not pass MakeFlags to CMake.
* Add more explaination for posible reasons of failing to identify tests.