//===----- pooling.cpp - Lowering Pooling Ops -----------------------------===// // // Copyright 2019 The IBM Research Authors. // // ============================================================================= // // This file lowers the ONNX Pooling Operators to Krnl dialect. // //===----------------------------------------------------------------------===// #include "src/conversion/onnx_to_krnl/onnx_to_krnl_common.hpp" using namespace mlir; // Identity values template <> float getIdentityValue() { return (float)-std::numeric_limits::infinity(); } template <> int getIdentityValue() { return std::numeric_limits::min(); } template <> Value mapToLowerScalarOp(Operation *op, ArrayRef result_types, ArrayRef operands, ConversionPatternRewriter &rewriter) { auto loc = op->getLoc(); Value lhs = operands[0]; Value rhs = operands[1]; auto max = rewriter.create(loc, CmpFPredicate::OGT, lhs, rhs); auto result = rewriter.create(loc, max, lhs, rhs); return result; } struct ONNXMaxPoolSingleOutOpLowering : public ConversionPattern { ONNXMaxPoolSingleOutOpLowering(MLIRContext *ctx) : ConversionPattern( mlir::ONNXMaxPoolSingleOutOp::getOperationName(), 1, ctx) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { auto loc = op->getLoc(); // Match ONNXMaxPoolSingleOutOp poolOp = llvm::dyn_cast(op); // Read kernel_shape attribute SmallVector kernelShape; auto kernelShapeAttribute = poolOp.kernel_shapeAttr(); for (auto dim : kernelShapeAttribute.getValue()) kernelShape.emplace_back(dim.cast().getInt()); // Read strides attribute SmallVector strides; auto stridesAttribute = poolOp.stridesAttr(); for (auto stride : stridesAttribute.getValue()) strides.emplace_back(stride.cast().getInt()); // Read ceil_mode attribute auto ceilMode = poolOp.ceil_mode().getSExtValue(); // Read pads attribute SmallVector pads; auto padsAttribute = poolOp.padsAttr(); for (auto pad : padsAttribute.getValue()) pads.emplace_back(pad.cast().getInt()); // Read dilations attribute SmallVector dilations; auto dilationsAttribute = poolOp.dilationsAttr(); for (auto dilation : dilationsAttribute.getValue()) dilations.emplace_back(dilation.cast().getInt()); // Type information about the input and result of this operation. auto &inputOperand = operands[0]; auto inputShape = inputOperand.getType().cast().getShape(); auto memRefType = convertToMemRefType(*op->result_type_begin()); auto resultShape = memRefType.getShape(); auto resultElementType = memRefType.getElementType(); // Batch indices: N and C dimensions int batchRank = 2; // Insert an allocation and deallocation for the result of this operation. Value alloc; bool insertDealloc = checkInsertDealloc(op); if (hasAllConstantDimensions(memRefType)) alloc = insertAllocAndDealloc(memRefType, loc, rewriter, insertDealloc); else { // Compute dimensions of the result of this operation. SmallVector allocOperands; for (int i = 0; i < batchRank; ++i) { if (resultShape[i] < 0) { auto dim = rewriter.create(loc, inputOperand, i); allocOperands.emplace_back(dim); } } Value zero, one; if (ceilMode) { zero = rewriter.create( loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0)); } one = rewriter.create( loc, rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1)); int spatialRank = resultShape.size() - batchRank; for (int i = batchRank; i < resultShape.size(); ++i) { if (resultShape[i] < 0) { // dim = // let numerator = (input + pad - (kernel - 1) * dilation + 1) // in let denomitor = stride // in // if (ceilMode) // ceil(numerator / denominator) + 1 // else // floor(numerator / denominator) + 1 int spatialIndex = i - batchRank; // numerator = (input + pad - (kernel - 1) * dilation + 1) auto inputDim = rewriter.create(loc, inputOperand, i); auto inputVal = rewriter.create( loc, inputDim, rewriter.getIntegerType(64)); int64_t padKernelDilation = (pads[spatialIndex] + pads[spatialIndex + spatialRank]) - (kernelShape[spatialIndex] - 1) * dilations[spatialIndex] + 1; auto padKernelDilationVal = rewriter.create( loc, rewriter.getIntegerAttr( rewriter.getIntegerType(64), padKernelDilation)); auto numeratorVal = rewriter.create(loc, inputVal, padKernelDilationVal); // denominator auto denominatorVal = rewriter.create( loc, rewriter.getIntegerAttr( rewriter.getIntegerType(64), strides[spatialIndex])); // numerator / denominator Value dimVal = rewriter.create(loc, numeratorVal, denominatorVal); if (ceilMode) { auto remainder = rewriter.create( loc, numeratorVal, denominatorVal); auto isZero = rewriter.create( loc, CmpIPredicate::eq, remainder, zero); auto dimPlusOne = rewriter.create(loc, dimVal, one); dimVal = rewriter.create(loc, isZero, dimVal, dimPlusOne); } dimVal = rewriter.create(loc, dimVal, one); allocOperands.emplace_back(rewriter.create( loc, dimVal, rewriter.getIndexType())); } } alloc = rewriter.create(loc, memRefType, allocOperands); if (insertDealloc) { auto *parentBlock = alloc.getDefiningOp()->getBlock(); auto dealloc = rewriter.create(loc, alloc); dealloc.getOperation()->moveBefore(&parentBlock->back()); } } // R = MaxPool(D) // // The input/output shapes will look like this: // // D (NxCxHxW) -> R (NxCxRHxRW) // // The loop nest will look as follows: // // strides = [s1, s2] // // for n = 0 .. N: // for c = 0 .. C: // for r1 = 0 .. RH: // for r2 = 0 .. RW: // R[n][c][r1][r2] = negative_infinity; // for k1 = 0 .. KH: // for k2 = 0 .. KW: // t = D[n][c][s1 * r1 + k1][s2 * r2 + k2]; // R[n][c][r1][r2] = max(R[n][c][r1][r2], t); // // Naming: // n, c, r1, r2: outer loop nest indices // k1, k2: inner loop nest indices // // TODO: handle padding. // // 1. Define outer loops and emit empty optimization block. auto nOuterLoops = resultShape.size(); BuildKrnlLoop outerLoops(rewriter, loc, nOuterLoops); outerLoops.createDefineOptimizeAndIterateOp(alloc); rewriter.setInsertionPointToStart(outerLoops.getIterateBlock()); { // 2. Emit the body of the outer loop nest. SmallVector resultIndices; for (int i = 0; i < nOuterLoops; ++i) resultIndices.emplace_back(outerLoops.getInductionVar(i)); // 2.1 Emit: R[n][c][r1][r2] = negative_infinity; Value identity; if (resultElementType.isa()) { identity = rewriter.create( loc, FloatAttr::get(resultElementType, getIdentityValue())); } else if (resultElementType.isa()) { identity = rewriter.create( loc, IntegerAttr::get(resultElementType, getIdentityValue())); } else { emitError(loc, "unsupported element type"); } rewriter.create(loc, identity, alloc, resultIndices); // 2.2 Define inner loops. int nInnerLoops = kernelShape.size(); BuildKrnlLoop innerLoops(rewriter, loc, nInnerLoops); innerLoops.createDefineAndOptimizeOp(); // for Kx = 0 .. KX for (int i = 0; i < nInnerLoops; ++i) innerLoops.pushBounds(0, kernelShape[i]); // 2.3 Emit inner loop nest. innerLoops.createIterateOp(); rewriter.setInsertionPointToStart(innerLoops.getIterateBlock()); { // 3. Emit inner loop body // t = D[n][c][s1 * r1 + k1][s2 * r2 + k2]; // R[n][c][r1][r2] = max(R[n][c][r1][r2], t); // 3.1 Prepare indices for accesing the data tensor. SmallVector dataIndices; // Batch indices: n, c for (int i = 0; i < batchRank; ++i) dataIndices.emplace_back(outerLoops.getInductionVar(i)); // Spatial indices: sX * rX + kX for (int i = batchRank; i < nOuterLoops; ++i) { Value spatialIndex = outerLoops.getInductionVar(i); // If strides are present then emit the correct access index. if (stridesAttribute && strides[i - batchRank] > 1) { spatialIndex = rewriter.create(loc, rewriter.create(loc, strides[i - batchRank]), outerLoops.getInductionVar(i)); } spatialIndex = rewriter.create( loc, spatialIndex, innerLoops.getInductionVar(i - batchRank)); // If ceil mode is enabled, then the calculated access index may // exceed its dimension. In such a case, we will use the maximum // index, which causes multiple visits to the element of the // maximum index. // TODO: Avoid multiple visits. if (ceilMode) { Value inputIndex; if (inputShape[i] < 0) { Value inputDim = rewriter.create(loc, inputOperand, i); Value one = rewriter.create(loc, 1); inputIndex = rewriter.create(loc, inputDim, one); } else { inputIndex = rewriter.create(loc, inputShape[i] - 1); } auto greaterCondition = rewriter.create( loc, CmpIPredicate::sgt, spatialIndex, inputIndex); spatialIndex = rewriter.create( loc, greaterCondition, inputIndex, spatialIndex); } dataIndices.emplace_back(spatialIndex); } // 3.2 Do pooling. auto loadData = rewriter.create(loc, inputOperand, dataIndices); auto loadPartialResult = rewriter.create(loc, alloc, resultIndices); Value result = mapToLowerScalarOp( op, resultElementType, {loadPartialResult, loadData}, rewriter); rewriter.create(loc, result, alloc, resultIndices); } } rewriter.replaceOp(op, alloc); return matchSuccess(); } }; void populateLoweringONNXPoolingOpPattern( OwningRewritePatternList &patterns, MLIRContext *ctx) { patterns.insert(ctx); }