// RUN: onnx-mlir-opt --shape-inference %s -split-input-file | FileCheck %s // ----- //===----------------------------------------------------------------------===// /// Test the default behavior of transpose when no information for the /// permutation of the axes is provided and when a permutation is provided. //===----------------------------------------------------------------------===// func @test_default_transpose(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> { %0 = "onnx.Transpose"(%arg0) : (tensor<5x5x1x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_transpose // CHECK: [[RES:%.+]] = "onnx.Transpose"(%arg0) : (tensor<5x5x1x32xf32>) -> tensor<32x1x5x5xf32> // CHECK: return [[RES]] : tensor<32x1x5x5xf32> } // ----- /// Test shape inference for transposition when perm attribute is specified. func @test_transpose(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> { %0 = "onnx.Transpose"(%arg0) {perm = [2, 0, 3, 1]} : (tensor<5x5x1x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_transpose // CHECK: [[RES_ATTR:%.+]] = "onnx.Transpose"(%arg0) {perm = [2, 0, 3, 1]} : (tensor<5x5x1x32xf32>) -> tensor<1x5x32x5xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x5xf32> } // ----- //===----------------------------------------------------------------------===// /// Test the shape inferencing scheme for the matmul operation. //===----------------------------------------------------------------------===// /// MatMul: 1-D x 1-D func @test_matmul_1(%arg0 : tensor<32xf32>, %arg1 : tensor<32xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<32xf32>, tensor<32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_1 // CHECK: [[RES1:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<32xf32>, tensor<32xf32>) -> tensor<1xf32> // CHECK: return [[RES1]] : tensor<1xf32> } // ----- /// MatMul: K-D x 2-D (K > 2) func @test_matmul_2(%arg0 : tensor<16x?x64x42xf32>, %arg1 : tensor<42x32xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<16x?x64x42xf32>, tensor<42x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_2 // CHECK: [[RES2:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<16x?x64x42xf32>, tensor<42x32xf32>) -> tensor<16x?x64x32xf32> // CHECK: return [[RES2]] : tensor<16x?x64x32xf32> } // ----- /// MatMul: 2-D x K-D (K > 2) func @test_matmul_3(%arg0 : tensor<64x42xf32>, %arg1 : tensor<16x?x42x32xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<64x42xf32>, tensor<16x?x42x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_3 // CHECK: [[RES3:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<64x42xf32>, tensor<16x?x42x32xf32>) -> tensor<16x?x64x32xf32> // CHECK: return [[RES3]] : tensor<16x?x64x32xf32> } // ----- /// MatMul: 2-D x K-D (K > 2) func @test_matmul_4(%arg0 : tensor<64x42xf32>, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<64x42xf32>, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_4 // CHECK: [[RES4:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<64x42xf32>, tensor) -> tensor // CHECK: return [[RES4]] : tensor } // ----- /// MatMul: K1-D x K2-D (K1 > 2, K2 > 2) func @test_matmul_5(%arg0 : tensor<16x?x?x42xf32>, %arg1 : tensor<32x?x64x42x32xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<16x?x?x42xf32>, tensor<32x?x64x42x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_5 // CHECK: [[RES5:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<16x?x?x42xf32>, tensor<32x?x64x42x32xf32>) -> tensor<32x16x64x?x32xf32> // CHECK: return [[RES5]] : tensor<32x16x64x?x32xf32> } // ----- /// MatMul: 1-D x 2-D func @test_matmul_6(%arg0 : tensor<32xf32>, %arg1 : tensor<32x64xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<32xf32>, tensor<32x64xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_6 // CHECK: [[RES6:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<32xf32>, tensor<32x64xf32>) -> tensor<64xf32> // CHECK: return [[RES6]] : tensor<64xf32> } // ----- /// MatMul: 2-D x 1-D func @test_matmul_7(%arg0 : tensor<32x64xf32>, %arg1 : tensor<64xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<32x64xf32>, tensor<64xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_7 // CHECK: [[RES7:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<32x64xf32>, tensor<64xf32>) -> tensor<32xf32> // CHECK: return [[RES7]] : tensor<32xf32> } // ----- /// MatMul: 2-D x 2-D func @test_matmul_8(%arg0 : tensor<32x64xf32>, %arg1 : tensor<64x128xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<32x64xf32>, tensor<64x128xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_8 // CHECK: [[RES8:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<32x64xf32>, tensor<64x128xf32>) -> tensor<32x128xf32> // CHECK: return [[RES8]] : tensor<32x128xf32> } // ----- /// MatMul: 1-D x N-D func @test_matmul_9(%arg0 : tensor<42xf32>, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor<42xf32>, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_9 // CHECK: [[RES1:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor<42xf32>, tensor) -> tensor // CHECK: return [[RES1]] : tensor } // ----- /// MatMul: N-D x 1-D func @test_matmul_10(%arg0 : tensor, %arg1 : tensor<32xf32>) -> tensor<*xf32> { %0 = "onnx.MatMul"(%arg0, %arg1) : (tensor, tensor<32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul_10 // CHECK: [[RES1:%.+]] = "onnx.MatMul"(%arg0, %arg1) : (tensor, tensor<32xf32>) -> tensor // CHECK: return [[RES1]] : tensor } // ----- //===----------------------------------------------------------------------===// /// Test shape inference for Conv (first with no bias) operation and all its attributes. //===----------------------------------------------------------------------===// /// Default and required attributes for 1-D convolution. func @test_conv_no_bias_0(%arg0 : tensor<1x2x32xf32>, %arg1 : tensor<5x2x6xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32xf32>, tensor<5x2x6xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_0 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1], group = 1 : i64, kernel_shape = [6], pads = [0, 0], strides = [1]} : (tensor<1x2x32xf32>, tensor<5x2x6xf32>, none) -> tensor<1x5x27xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x27xf32> } // ----- /// Default and required attributes. func @test_conv_no_bias_1(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_1 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 7], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x27x58xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x27x58xf32> } // ----- /// kernel_shape attribute. func @test_conv_no_bias_2(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, kernel_shape = [8, 9]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_2 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [8, 9], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x25x56xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x25x56xf32> } // ----- /// pads attribute. /// Use pads to make output size equal to input size by adding K - 1 to the result. func @test_conv_no_bias_3(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x10xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, pads = [2, 4, 3, 5]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_3 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 10], pads = [2, 4, 3, 5], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<1x5x32x64xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32> } // ----- /// auto_pad set to SAME_UPPER and SAME_LOWER. func @test_conv_no_bias_4(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x10xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "SAME_UPPER", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_4 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 10], pads = [2, 4, 3, 5], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<1x5x32x64xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32> } // ----- func @test_conv_no_bias_5(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x10xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "SAME_LOWER", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_5 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 10], pads = [3, 5, 2, 4], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<1x5x32x64xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32> } // ----- /// auto_pad set to VALID. func @test_conv_no_bias_6(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x10xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "VALID", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_6 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 10], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x10xf32>, none) -> tensor<1x5x27x55xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x27x55xf32> } // ----- /// With strides attribute. func @test_conv_no_bias_7(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, strides = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_7 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 7], pads = [0, 0, 0, 0], strides = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x14x20xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x14x20xf32> } // ----- /// auto_pad set to SAME_UPPER with strides attribute. /// The auto_pad will pas as if stride is equal to 1. func @test_conv_no_bias_8(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "SAME_UPPER", group = 1 : i64, strides = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_8 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [1, 1], group = 1 : i64, kernel_shape = [6, 7], pads = [2, 3, 2, 3], strides = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x16x22xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x16x22xf32> } // ----- /// dilations attribute. func @test_conv_no_bias_9(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, dilations = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_9 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [2, 3], group = 1 : i64, kernel_shape = [6, 7], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x22x46xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x22x46xf32> } // ----- /// dilations attribute with stride. func @test_conv_no_bias_10(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, dilations = [2, 3], strides = [2, 2]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_10 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [2, 3], group = 1 : i64, kernel_shape = [6, 7], pads = [0, 0, 0, 0], strides = [2, 2]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x11x23xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x11x23xf32> } // ----- /// dilations attribute with auto_pad set to SAME_UPPER. func @test_conv_no_bias_11(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "SAME_UPPER", group = 1 : i64, dilations = [2, 3]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_11 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", dilations = [2, 3], group = 1 : i64, kernel_shape = [6, 7], pads = [5, 9, 5, 9], strides = [1, 1]} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<1x5x32x64xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x32x64xf32> } // ----- // Test convolution with bias input. func @test_conv_12(%arg0 : tensor<1x2x32xf32>, %arg1 : tensor<5x2x6xf32>, %arg2 : tensor<5xf32>) -> tensor<*xf32> { %0 = "onnx.Conv"(%arg0, %arg1, %arg2) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32xf32>, tensor<5x2x6xf32>, tensor<5xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_12 // CHECK: [[RES_ATTR:%.+]] = "onnx.Conv"(%arg0, %arg1, %arg2) {auto_pad = "NOTSET", dilations = [1], group = 1 : i64, kernel_shape = [6], pads = [0, 0], strides = [1]} : (tensor<1x2x32xf32>, tensor<5x2x6xf32>, tensor<5xf32>) -> tensor<1x5x27xf32> // CHECK: return [[RES_ATTR]] : tensor<1x5x27xf32> } // ----- //===----------------------------------------------------------------------===// /// Test shape inference for PadConstantValuePad. //===----------------------------------------------------------------------===// /// Test PadConstantValuePad_1 func @test_PadConstantValuePad_1(%arg0 : tensor<16x13xf32>) -> tensor<*xf32> { %0 = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 0, 2, 0]} : (tensor<16x13xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_PadConstantValuePad_1 // CHECK: [[RES:%.+]] = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 0, 2, 0]} : (tensor<16x13xf32>) -> tensor<18x13xf32> // CHECK: return [[RES]] : tensor<18x13xf32> } // ----- /// Test PadConstantPad_1 func @test_PadConstantPad_1(%arg0 : tensor<16x13xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> { %0 = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 3, 2, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_PadConstantPad_1 // CHECK: [[RES:%.+]] = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 3, 2, 1]} : (tensor<16x13xf32>, tensor<*xf32>) -> tensor<18x17xf32> // CHECK: return [[RES]] : tensor<18x17xf32> } // ----- /// Test PadConstantPad_2 func @test_PadConstantPad_2(%arg0 : tensor<16x?xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> { %0 = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 3, 2, 1]} : (tensor<16x?xf32>, tensor<*xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_PadConstantPad_2 // CHECK: [[RES:%.+]] = "onnx.PadConstantPad"(%arg0, %arg1) {mode = "constant", pads = [0, 3, 2, 1]} : (tensor<16x?xf32>, tensor<*xf32>) -> tensor<18x?xf32> // CHECK: return [[RES]] : tensor<18x?xf32> } // ----- //===----------------------------------------------------------------------===// /// Test for constant op. //===----------------------------------------------------------------------===// /// Test ConstantOp shape inference for 1-D dense tensor. func @test_constant_dense_1d_value() -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[0.0, 1.0, 2.0]> : tensor<3xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_constant_dense_1d_value // CHECK: [[RES:%.+]] = "onnx.Constant"() {value = dense<[0.000000e+00, 1.000000e+00, 2.000000e+00]> : tensor<3xf32>} : () -> tensor<3xf32> // CHECK: return [[RES]] : tensor<3xf32> } // ----- /// Test ConstantOp shape inference for 2-D dense tensor. func @test_constant_dense_2d_value() -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[[0.0, 0.0], [1.0, 1.1], [2.0, 2.1]]> : tensor<3x2xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_constant_dense_2d_value // CHECK: [[RES:%.+]] = "onnx.Constant"() {value = dense<{{\[}}[0.000000e+00, 0.000000e+00], [1.000000e+00, 1.100000e+00], [2.000000e+00, 2.100000e+00{{\]}}]> : tensor<3x2xf32>} : () -> tensor<3x2xf32> // CHECK: return [[RES]] : tensor<3x2xf32> } // ----- /// Test ConstantOp shape inference for 1-D sparse tensor. func @test_constant_sparse_1d_value() -> tensor<*xf32> { %0 = "onnx.Constant"() {sparse_value = sparse<[[0]], [1.0]> : tensor<3xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_constant_sparse_1d_value // CHECK: [[RES:%.+]] = "onnx.Constant"() {sparse_value = sparse<0, 1.000000e+00> : tensor<3xf32>} : () -> tensor<3xf32> // CHECK: return [[RES]] : tensor<3xf32> } // ----- /// Test ConstantOp shape inference for 2-D sparse tensor. func @test_constant_sparse_2d_value() -> tensor<*xf32> { %0 = "onnx.Constant"() {sparse_value = sparse<[[0, 1]], [2.0]> : tensor<3x2xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_constant_sparse_2d_value // CHECK: [[RES:%.+]] = "onnx.Constant"() {sparse_value = sparse<{{\[}}[0, 1{{\]}}], 2.000000e+00> : tensor<3x2xf32>} : () -> tensor<3x2xf32> // CHECK: return [[RES]] : tensor<3x2xf32> } // ----- /// Test the default behavior of Average Pool with no padding (pad are set but shoud be ignored) func @test_default_averagepool(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "VALID", ceil_mode = 0, kernel_shape = [3,3], pads = [1, 1, 1, 1] } : (tensor<5x5x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32> // CHECK: return [[RES]] : tensor<5x5x30x30xf32> } // ----- /// Test the default behavior of Average Pool with no padding (pad are not set, default to zero) func @test_default_averagepool_defpad(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0, kernel_shape = [3,3]} : (tensor<5x5x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_defpad // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x30x30xf32> // CHECK: return [[RES]] : tensor<5x5x30x30xf32> } // ----- /// Test the default behavior of Average Pool with uniform padding func @test_default_averagepool_pad(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0, kernel_shape = [3,3], pads = [1, 1, 1, 1] } : (tensor<5x5x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_pad // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x32x32xf32> // CHECK: return [[RES]] : tensor<5x5x32x32xf32> } // ----- /// Test the default behavior of Average Pool with non uniform padding func @test_default_averagepool_pad_nonunif(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0, kernel_shape = [5,3], pads = [2, 1, 1, 0] } : (tensor<5x5x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_pad_nonunif // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [5, 3], pads = [2, 1, 1, 0], strides = [1, 1]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x31x31xf32> // CHECK: return [[RES]] : tensor<5x5x31x31xf32> } // ----- /// Test the default behavior of Average Pool with non uniform padding func @test_default_averagepool_strides(%arg0 : tensor<5x5x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0, kernel_shape = [3,3], pads = [1, 1, 1, 1], strides = [2, 2] } : (tensor<5x5x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_strides // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<5x5x32x32xf32>) -> tensor<5x5x16x16xf32> // CHECK: return [[RES]] : tensor<5x5x16x16xf32> } // ----- /// Test the default behavior of Average Pool with non uniform padding func @test_default_averagepool_strides_nonunifpad(%arg0 : tensor<5x5x30x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0, kernel_shape = [2,2], pads = [1, 0, 0, 0], strides = [2, 2] } : (tensor<5x5x30x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_strides_nonunifpad // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 0 : i64, kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x15x16xf32> // CHECK: return [[RES]] : tensor<5x5x15x16xf32> } // ----- /// Test the default behavior of Average Pool with non uniform padding func @test_default_averagepool_strides_nonunifpad_ceil(%arg0 : tensor<5x5x30x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 1, kernel_shape = [2,2], pads = [1, 0, 0, 0], strides = [2, 2] } : (tensor<5x5x30x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_default_averagepool_strides_nonunifpad_ceil // CHECK: [[RES:%.+]] = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", ceil_mode = 1 : i64, kernel_shape = [2, 2], pads = [1, 0, 0, 0], strides = [2, 2]} : (tensor<5x5x30x32xf32>) -> tensor<5x5x16x16xf32> // CHECK: return [[RES]] : tensor<5x5x16x16xf32> } // ----- //===----------------------------------------------------------------------===// /// Test the reshape op inference when constants are present. //===----------------------------------------------------------------------===// func @test_reshape_dynamic(%arg0 : tensor<5x5x1x32xf32>, %arg1 : tensor<4xi32>) -> tensor<*xf32> { %0 = "onnx.Reshape"(%arg0, %arg1) : (tensor<5x5x1x32xf32>, tensor<4xi32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reshape_dynamic // CHECK: [[RES:%.+]] = "onnx.Reshape"(%arg0, %arg1) : (tensor<5x5x1x32xf32>, tensor<4xi32>) -> tensor // CHECK: return [[RES]] : tensor } // ----- func @test_reshape_1(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[5, 5, 16, 2]> : tensor<4xi32> } : () -> tensor<4xi32> %1 = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<4xi32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reshape_1 // CHECK: [[RES:%.+]] = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<4xi32>) -> tensor<5x5x16x2xf32> // CHECK: return [[RES]] : tensor<5x5x16x2xf32> } // ----- func @test_reshape_2(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[-1, 16, 2]> : tensor<3xi32> } : () -> tensor<3xi32> %1 = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<3xi32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reshape_2 // CHECK: [[RES:%.+]] = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<3xi32>) -> tensor<25x16x2xf32> // CHECK: return [[RES]] : tensor<25x16x2xf32> } // ----- func @test_reshape_3(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[-1, 0, 2]> : tensor<3xi32> } : () -> tensor<3xi32> %1 = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<3xi32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reshape_3 // CHECK: [[RES:%.+]] = "onnx.Reshape"(%arg0, %0) : (tensor<5x5x1x32xf32>, tensor<3xi32>) -> tensor<80x5x2xf32> // CHECK: return [[RES]] : tensor<80x5x2xf32> } // ----- //===----------------------------------------------------------------------===// /// Test the reshape op inference when concat are present. //===----------------------------------------------------------------------===// func @test_concat_1(%arg0 : tensor<5x5x1x32xf32>, %arg1 : tensor<5x5x3x32xf32>, %arg2 : tensor<5x5x5x32xf32>) -> tensor<*xf32> { %1 = "onnx.Concat"(%arg0, %arg1, %arg2) { axis = 2 } : (tensor<5x5x1x32xf32>, tensor<5x5x3x32xf32>, tensor<5x5x5x32xf32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_concat_1 // CHECK: [[RES:%.+]] = "onnx.Concat"(%arg0, %arg1, %arg2) {axis = 2 : i64} : (tensor<5x5x1x32xf32>, tensor<5x5x3x32xf32>, tensor<5x5x5x32xf32>) -> tensor<5x5x9x32xf32> // CHECK: return [[RES]] : tensor<5x5x9x32xf32> } // ----- func @test_concat_2(%arg0 : tensor<5x1x32xf32>, %arg1 : tensor<5x3x32xf32>, %arg2 : tensor<5x5x32xf32>) -> tensor<*xf32> { %1 = "onnx.Concat"(%arg0, %arg1, %arg2) { axis = 1 } : (tensor<5x1x32xf32>, tensor<5x3x32xf32>, tensor<5x5x32xf32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_concat_2 // CHECK: [[RES:%.+]] = "onnx.Concat"(%arg0, %arg1, %arg2) {axis = 1 : i64} : (tensor<5x1x32xf32>, tensor<5x3x32xf32>, tensor<5x5x32xf32>) -> tensor<5x9x32xf32> // CHECK: return [[RES]] : tensor<5x9x32xf32> } // ----- func @test_concat_3(%arg0 : tensor<5x1x32xf32>, %arg1 : tensor<5x3x32xf32>, %arg2 : tensor<5x5x32xf32>) -> tensor<*xf32> { %1 = "onnx.Concat"(%arg0, %arg1, %arg2) { axis = -2 } : (tensor<5x1x32xf32>, tensor<5x3x32xf32>, tensor<5x5x32xf32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_concat_3 // CHECK: [[RES:%.+]] = "onnx.Concat"(%arg0, %arg1, %arg2) {axis = 1 : i64} : (tensor<5x1x32xf32>, tensor<5x3x32xf32>, tensor<5x5x32xf32>) -> tensor<5x9x32xf32> // CHECK: return [[RES]] : tensor<5x9x32xf32> }