// RUN: onnf-opt --shape-inference --lower-frontend %s -split-input-file | FileCheck %s module { func @test_sigmoid(%a1 : tensor, %a2 : tensor) -> tensor<*xf32> { %0 = "onnx.Add"(%a1, %a2) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () } } // CHECK: func @test_sigmoid([[ARG0:%.+]]: memref, [[ARG1:%.+]]: memref) -> memref { // CHECK: [[DIM_0:%.+]] = dim [[ARG0]], 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim [[ARG0]], 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load [[ARG0]][%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load [[ARG1]][%arg2, %arg3] : memref // CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADDF]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref