// RUN: onnx-mlir-opt --shape-inference --lower-frontend %s -split-input-file | FileCheck %s // ---- func @test_no_argument_1() -> () { } func @test_no_argument_2() -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[[1.000000e+0, 2.000000e+00], [3.000000e+00, 4.000000e+00]]> : tensor<2x2xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () } // CHECK: test_no_argument_1 // CHECK-NEXT: test_no_argument_2 // CHECK: [[RES:%.+]] = "{{.*}}"({{.*}}) {{.*}} : ({{.*}}) -> memref<2x2xf32> // CHECK: return [[RES]] : memref<2x2xf32> // ----- func @test_elementwise_op_with_scalar_values_1(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Exp"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_elementwise_op_with_scalar_values_1 // CHECK: [[RES:%.+]] = alloc() : memref // CHECK: [[LOAD:%.+]] = affine.load %arg0[] : memref // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: affine.store [[EXP]], [[RES]][] : memref // CHECK: return [[RES]] : memref } // ----- func @test_elementwise_op_with_scalar_values_2(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Add"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_elementwise_op_with_scalar_values_2 // CHECK: [[RES:%.+]] = alloc() : memref // CHECK: [[LOAD1:%.+]] = load %arg0[] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[] : memref // CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADD]], [[RES]][] : memref // CHECK: return [[RES]] : memref } // ----- func @test_elementwise_op_with_scalar_values_3(%arg0 : tensor, %arg1 : tensor, %arg2 : tensor) -> tensor<*xf32> { %0 = "onnx.Sum"(%arg0, %arg1, %arg2) : (tensor, tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_elementwise_op_with_scalar_values_3 // CHECK: [[RES:%.+]] = alloc() : memref // CHECK: [[LOAD1:%.+]] = load %arg0[] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[] : memref // CHECK: [[ADD1:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: [[LOAD3:%.+]] = load %arg2[] : memref // CHECK: [[ADD2:%.+]] = addf [[ADD1]], [[LOAD3]] : f32 // CHECK: store [[ADD2]], [[RES]][] : memref // CHECK: return [[RES]] : memref } // ----- func @test_add(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Add"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_add // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADDF]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_mul(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Mul"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_mul // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[MULF:%.+]] = mulf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[MULF]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_div(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Div"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_div // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[DIVF:%.+]] = divf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[DIVF]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_sub(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Sub"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sub // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[SUBF:%.+]] = subf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[SUBF]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_and(%arg0 : tensor<10x10xi1>, %arg1 : tensor<10x10xi1>) -> tensor<*xi1> { %0 = "onnx.And"(%arg0, %arg1) : (tensor<10x10xi1>, tensor<10x10xi1>) -> tensor<*xi1> "std.return"(%0) : (tensor<*xi1>) -> () // CHECK-LABEL: test_and // CHECK: [[RES:%.+]] = alloc() : memref<10x10xi1> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[AND:%.+]] = and [[LOAD1]], [[LOAD2]] : i1 // CHECK: store [[AND]], [[RES]][%arg2, %arg3] : memref<10x10xi1> // CHECK: return [[RES]] : memref<10x10xi1> } // ----- func @test_or(%arg0 : tensor<10x10xi1>, %arg1 : tensor<10x10xi1>) -> tensor<*xi1> { %0 = "onnx.Or"(%arg0, %arg1) : (tensor<10x10xi1>, tensor<10x10xi1>) -> tensor<*xi1> "std.return"(%0) : (tensor<*xi1>) -> () // CHECK-LABEL: test_or // CHECK: [[RES:%.+]] = alloc() : memref<10x10xi1> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[OR:%.+]] = or [[LOAD1]], [[LOAD2]] : i1 // CHECK: store [[OR]], [[RES]][%arg2, %arg3] : memref<10x10xi1> // CHECK: return [[RES]] : memref<10x10xi1> } // ----- func @test_xor(%arg0 : tensor<10x10xi1>, %arg1 : tensor<10x10xi1>) -> tensor<*xi1> { %0 = "onnx.Xor"(%arg0, %arg1) : (tensor<10x10xi1>, tensor<10x10xi1>) -> tensor<*xi1> "std.return"(%0) : (tensor<*xi1>) -> () // CHECK-LABEL: test_xor // CHECK: [[RES:%.+]] = alloc() : memref<10x10xi1> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi1> // CHECK: [[XOR:%.+]] = xor [[LOAD1]], [[LOAD2]] : i1 // CHECK: store [[XOR]], [[RES]][%arg2, %arg3] : memref<10x10xi1> // CHECK: return [[RES]] : memref<10x10xi1> } // ----- func @test_exp(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Exp"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_exp // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: affine.store [[EXP]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_tanh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Tanh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_tanh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32 // CHECK: [[DIVISOR:%.+]] = addf [[EXP]], [[NEXP]] : f32 // CHECK: [[TANH:%.+]] = divf [[DIVIDEND]], [[DIVISOR]] : f32 // CHECK: affine.store [[TANH]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_sinh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sinh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sinh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[TWO:%.+]] = constant {{2.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32 // CHECK: [[SINH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32 // CHECK: affine.store [[SINH_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_cosh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Cosh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_cosh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[TWO:%.+]] = constant {{2.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = addf [[EXP]], [[NEXP]] : f32 // CHECK: [[COSH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32 // CHECK: affine.store [[COSH_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_cos(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Cos"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_cos // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[COS:%.+]] = cos [[LOAD]] : f32 // CHECK: affine.store [[COS]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_log(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Log"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_log // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[LOG:%.+]] = log [[LOAD]] : f32 // CHECK: affine.store [[LOG]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_sigmoid(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sigmoid"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sigmoid // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVISOR:%.+]] = addf [[ONE]], [[NEXP]] : f32 // CHECK: [[SIGMOID_RES:%.+]] = divf [[ONE]], [[DIVISOR]] : f32 // CHECK: affine.store [[SIGMOID_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_relu(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Relu"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_relu // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[LTZERO:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[RELU_RES:%.+]] = select [[LTZERO]], [[ZERO]], [[LOAD]] : f32 // CHECK: affine.store [[RELU_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_reshape(%arg0 : tensor, %arg1 : tensor<4xi32>) -> tensor<*xf32> { %0 = "onnx.Reshape"(%arg0, %arg1) : (tensor, tensor<4xi32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reshape // CHECK: [[TYPE_IN_BYTES_0:%.+]] = constant 4 : i64 // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[DIM_0_CAST:%.+]] = index_cast [[DIM_0]] : index to i64 // CHECK: [[MUL_0:%.+]] = muli [[TYPE_IN_BYTES_0]], [[DIM_0_CAST]] : i64 // CHECK: [[CONSTANT_0:%.+]] = constant 10 : i64 // CHECK: [[TENSOR_SIZE:%.+]] = muli [[MUL_0]], [[CONSTANT_0]] : i64 // CHECK: [[TYPE_IN_BYTES_1:%.+]] = constant 4 : i64 // CHECK: %[[CONSTANT_1:.+]] = constant 0 : index // CHECK: [[LOAD_0:%.+]] = load %arg1[%[[CONSTANT_1]]] : memref<4xi32> // CHECK: [[DIM_1:%.+]] = dim %arg0, 0 : memref // CHECK: [[DIM_1_CAST:%.+]] = index_cast [[DIM_1]] : index to i32 // CHECK: [[CONSTANT_2:%.+]] = constant 0 : i32 // CHECK: [[CMP_0:%.+]] = cmpi "eq", [[LOAD_0]], [[CONSTANT_2]] : i32 // CHECK: [[SELECT_0:%.+]] = select [[CMP_0]], [[DIM_1_CAST]], [[LOAD_0]] : i32 // CHECK: [[ZEXTI_0:%.+]] = zexti [[SELECT_0]] : i32 to i64 // CHECK: [[MUL_1:%.+]] = muli [[TYPE_IN_BYTES_1]], [[ZEXTI_0]] : i64 // CHECK: %[[CONSTANT_3:.+]] = constant 1 : index // CHECK: [[LOAD_1:%.+]] = load %arg1[%[[CONSTANT_3]]] : memref<4xi32> // CHECK: [[CONSTANT_3:%.+]] = constant 10 : i32 // CHECK: [[CONSTANT_4:%.+]] = constant 0 : i32 // CHECK: [[CMP_1:%.+]] = cmpi "eq", [[LOAD_1]], [[CONSTANT_4]] : i32 // CHECK: [[SELECT_1:%.+]] = select [[CMP_1]], [[CONSTANT_3]], [[LOAD_1]] : i32 // CHECK: [[ZEXTI_1:%.+]] = zexti [[SELECT_1]] : i32 to i64 // CHECK: [[MUL_2:%.+]] = muli [[MUL_1]], [[ZEXTI_1]] : i64 // CHECK: %[[CONSTANT_5:.+]] = constant 2 : index // CHECK: [[LOAD_2:%.+]] = load %arg1[%[[CONSTANT_5]]] : memref<4xi32> // CHECK: [[ZEXTI_2:%.+]] = zexti [[LOAD_2]] : i32 to i64 // CHECK: [[MUL_3:%.+]] = muli [[MUL_2]], [[ZEXTI_2]] : i64 // CHECK: %[[CONSTANT_6:.+]] = constant 3 : index // CHECK: [[LOAD_3:%.+]] = load %arg1[%[[CONSTANT_6]]] : memref<4xi32> // CHECK: [[ZEXTI_3:%.+]] = zexti [[LOAD_3]] : i32 to i64 // CHECK: [[MUL_4:%.+]] = muli [[MUL_3]], [[ZEXTI_3]] : i64 // CHECK: [[CONSTANT_7:%.+]] = constant 0 : i64 // CHECK: [[SUB_0:%.+]] = subi [[CONSTANT_7]], [[MUL_4]] : i64 // CHECK: [[CONSTANT_8:%.+]] = constant -1 : i64 // CHECK: [[CMP_2:%.+]] = cmpi "eq", [[ZEXTI_0]], [[CONSTANT_8]] : i64 // CHECK: [[DIVISIGNED_0:%.+]] = divi_signed [[TENSOR_SIZE]], [[SUB_0]] : i64 // CHECK: [[SELECT_2:%.+]] = select [[CMP_2]], [[DIVISIGNED_0]], [[ZEXTI_0]] : i64 // CHECK: [[CAST_0:%.+]] = index_cast [[SELECT_2]] : i64 to index // CHECK: [[CMP_3:%.+]] = cmpi "eq", [[ZEXTI_1]], [[CONSTANT_8]] : i64 // CHECK: [[DIVISIGNED_1:%.+]] = divi_signed [[TENSOR_SIZE]], [[SUB_0]] : i64 // CHECK: [[SELECT_3:%.+]] = select [[CMP_3]], [[DIVISIGNED_1]], [[ZEXTI_1]] : i64 // CHECK: [[CAST_1:%.+]] = index_cast [[SELECT_3]] : i64 to index // CHECK: [[CMP_4:%.+]] = cmpi "eq", [[ZEXTI_2]], [[CONSTANT_8]] : i64 // CHECK: [[DIVISIGNED_2:%.+]] = divi_signed [[TENSOR_SIZE]], [[SUB_0]] : i64 // CHECK: [[SELECT_4:%.+]] = select [[CMP_4]], [[DIVISIGNED_2]], [[ZEXTI_2]] : i64 // CHECK: [[CAST_2:%.+]] = index_cast [[SELECT_4]] : i64 to index // CHECK: [[CMP_5:%.+]] = cmpi "eq", [[ZEXTI_3]], [[CONSTANT_8]] : i64 // CHECK: [[DIVISIGNED_3:%.+]] = divi_signed [[TENSOR_SIZE]], [[SUB_0]] : i64 // CHECK: [[SELECT_5:%.+]] = select [[CMP_5]], [[DIVISIGNED_3]], [[ZEXTI_3]] : i64 // CHECK: [[CAST_3:%.+]] = index_cast [[SELECT_5]] : i64 to index // CHECK: [[ALLOC:%.+]] = alloc([[CAST_0]], [[CAST_1]], [[CAST_2]], [[CAST_3]]) : memref // CHECK: "krnl.memcpy"([[ALLOC]], %arg0, [[TENSOR_SIZE]]) : (memref, memref, i64) -> () // CHECK: return [[ALLOC]] : memref } // ----- func @test_sum(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Sum"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sum // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_max(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Max"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_max // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[MAX:%.+]] = cmpf "ogt", [[LOAD1]], [[LOAD2]] : f32 // CHECK: [[RELU_RES:%.+]] = select [[MAX]], [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[RELU_RES]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_min(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Min"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_min // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32> // CHECK: [[MIN:%.+]] = cmpf "olt", [[LOAD1]], [[LOAD2]] : f32 // CHECK: [[RELU_RES:%.+]] = select [[MIN]], [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[RELU_RES]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_elu(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Elu"(%arg0) {alpha=2.0:f32} : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_elu // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[ALPHA:%.+]] = constant {{2.+}} : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[SUB:%.+]] = subf [[EXP]], [[ONE]] : f32 // CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[SUB]] : f32 // CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32 // CHECK: affine.store [[SELECT]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_leakyrelu(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.LeakyRelu"(%arg0) {alpha=1.0:f32} : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_leakyrelu // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32 // CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32 // CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32 // CHECK: affine.store [[SELECT]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_selu(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Selu"(%arg0) {alpha=1.0:f32, gamma=2.0:f32} : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_selu // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32 // CHECK: [[GAMMA:%.+]] = constant {{2.+}} : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[CMP:%.+]] = cmpf "ogt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[EXP]] : f32 // CHECK: [[SUB:%.+]] = subf [[MUL]], [[ALPHA]] : f32 // CHECK: [[SELECT:%.+]] = select [[CMP]], [[LOAD]], [[SUB]] : f32 // CHECK: [[SELU_RES:%.+]] = mulf [[GAMMA]], [[SELECT]] : f32 // CHECK: affine.store [[SELU_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_hardsigmoid(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.HardSigmoid"(%arg0) {alpha=1.0:f32, beta=2.0:f32} : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_hardsigmoid // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32 // CHECK: [[BETA:%.+]] = constant {{2.+}} : f32 // CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32 // CHECK: [[ADD:%.+]] = addf [[MUL]], [[BETA]] : f32 // CHECK: [[CMP1:%.+]] = cmpf "ogt", [[ADD]], [[ZERO]] : f32 // CHECK: [[SELECT1:%.+]] = select [[CMP1]], [[ADD]], [[ZERO]] : f32 // CHECK: [[CMP2:%.+]] = cmpf "olt", [[SELECT1]], [[ONE]] : f32 // CHECK: [[SELECT2:%.+]] = select [[CMP2]], [[SELECT1]], [[ONE]] : f32 // CHECK: affine.store [[SELECT2]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_reciprocal(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Reciprocal"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reciprocal // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[RECIPROCAL_RES:%.+]] = divf [[ONE]], [[LOAD]] : f32 // CHECK: affine.store [[RECIPROCAL_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_softplus(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Softplus"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_softplus // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[ADD:%.+]] = addf [[EXP]], [[ONE]] : f32 // CHECK: [[SOFTPLUS_RES:%.+]] = log [[ADD]] : f32 // CHECK: affine.store [[SOFTPLUS_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_softsign(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Softsign"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_softsign // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ABS:%.+]] = absf [[LOAD]] : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[ADD:%.+]] = addf [[ABS]], [[ONE]] : f32 // CHECK: [[SOFTSIGN_RES:%.+]] = divf [[LOAD]], [[ADD]] : f32 // CHECK: affine.store [[SOFTSIGN_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_add_with_broadcasting(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Add"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_add_with_broadcasting // CHECK: [[DIM1:%.+]] = dim %arg1, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM1]]) : memref // CHECK: [[DIM2:%.+]] = dim %arg0, 0 : memref // CHECK: [[ONE:%.+]] = constant 1 : index // CHECK: [[IS_ONE:%.+]] = cmpi "eq", [[DIM2]], [[ONE]] : index // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM3:%.+]] = dim [[RES]], 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM3]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[ZERO:%.+]] = constant 0 : index // CHECK: %[[SELECT1:.+]] = select [[IS_ONE]], [[ZERO]], %arg3 : index // CHECK: [[LOAD1:%.+]] = load %arg0[%[[SELECT1]]] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref // CHECK: } // CHECK: return [[RES]] : memref } // ----- func @test_reducemax(%arg0 : tensor<3x2x2xf32>) -> tensor<*xf32> { %0 ="onnx.ReduceMax"(%arg0) {axes=[1], keepdims = 0 : i64} : (tensor<3x2x2xf32>)-> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reducemax // CHECK: [[RES:%.+]] = alloc() : memref<3x2xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 2) { // CHECK: [[IDENTITY:%.+]] = constant 0xFF800000 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2] : memref<3x2xf32> // CHECK: [[DEF_LOOPS2:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_LOOPS2:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1, [[DEF_LOOPS2]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1, [[OPT_LOOPS2]]#2) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 2, [[DEF_LOOPS2]]#2 -> %arg3 = 0 to 2) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg1, %arg2, %arg3] : memref<3x2x2xf32> // CHECK: [[LOAD2:%.+]] = load %0[%arg1, %arg3] : memref<3x2xf32> // CHECK: [[CMP:%.+]] = cmpf "ogt", [[LOAD2]], [[LOAD1]] : f32 // CHECK: [[SELECT:%.+]] = select %7, %6, %5 : f32 // CHECK: store [[SELECT]], [[RES]][%arg1, %arg3] : memref<3x2xf32> // CHECK: } // CHECK: return [[RES]] : memref<3x2xf32> } // ----- func @test_reducemin(%arg0 : tensor<3x2x2xf32>) -> tensor<*xf32> { %0 ="onnx.ReduceMin"(%arg0) {axes=[1], keepdims = 0 : i64} : (tensor<3x2x2xf32>)-> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reducemin // CHECK: [[RES:%.+]] = alloc() : memref<3x2xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 2) { // CHECK: [[IDENTITY:%.+]] = constant 0x7F800000 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2] : memref<3x2xf32> // CHECK: [[DEF_LOOPS2:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_LOOPS2:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1, [[DEF_LOOPS2]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1, [[OPT_LOOPS2]]#2) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 2, [[DEF_LOOPS2]]#2 -> %arg3 = 0 to 2) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg1, %arg2, %arg3] : memref<3x2x2xf32> // CHECK: [[LOAD2:%.+]] = load %0[%arg1, %arg3] : memref<3x2xf32> // CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD2]], [[LOAD1]] : f32 // CHECK: [[SELECT:%.+]] = select %7, %6, %5 : f32 // CHECK: store [[SELECT]], [[RES]][%arg1, %arg3] : memref<3x2xf32> // CHECK: } // CHECK: return [[RES]] : memref<3x2xf32> } // ----- func @test_reduceprod(%arg0 : tensor<3x2x2xf32>) -> tensor<*xf32> { %0 ="onnx.ReduceProd"(%arg0) {axes=[1], keepdims = 0 : i64} : (tensor<3x2x2xf32>)-> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reduceprod // CHECK: [[RES:%.+]] = alloc() : memref<3x2xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 2) { // CHECK: [[IDENTITY:%.+]] = constant 1.000000e+00 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2] : memref<3x2xf32> // CHECK: [[DEF_LOOPS2:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_LOOPS2:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1, [[DEF_LOOPS2]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1, [[OPT_LOOPS2]]#2) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 2, [[DEF_LOOPS2]]#2 -> %arg3 = 0 to 2) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg1, %arg2, %arg3] : memref<3x2x2xf32> // CHECK: [[LOAD2:%.+]] = load %0[%arg1, %arg3] : memref<3x2xf32> // CHECK: [[REDUCE:%.+]] = mulf %6, %5 : f32 // CHECK: store [[REDUCE]], [[RES]][%arg1, %arg3] : memref<3x2xf32> // CHECK: } // CHECK: return [[RES]] : memref<3x2xf32> } // ----- func @test_reducesum(%arg0 : tensor<3x2x2xf32>) -> tensor<*xf32> { %0 ="onnx.ReduceSum"(%arg0) {axes=[1], keepdims = 0 : i64} : (tensor<3x2x2xf32>)-> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_reducesum // CHECK: [[RES:%.+]] = alloc() : memref<3x2xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 2) { // CHECK: [[IDENTITY:%.+]] = constant 0.000000e+00 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2] : memref<3x2xf32> // CHECK: [[DEF_LOOPS2:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_LOOPS2:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1, [[DEF_LOOPS2]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1, [[OPT_LOOPS2]]#2) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 3, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 2, [[DEF_LOOPS2]]#2 -> %arg3 = 0 to 2) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg1, %arg2, %arg3] : memref<3x2x2xf32> // CHECK: [[LOAD2:%.+]] = load %0[%arg1, %arg3] : memref<3x2xf32> // CHECK: [[REDUCE:%.+]] = addf %6, %5 : f32 // CHECK: store [[REDUCE]], [[RES]][%arg1, %arg3] : memref<3x2xf32> // CHECK: } // CHECK: return [[RES]] : memref<3x2xf32> } // ----- func @test_softmax(%arg0 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Softmax"(%arg0) {axis=1:i64} : (tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_softmax // CHECK: [[MAX:%.+]] = alloc() : memref // CHECK: [[SUM:%.+]] = alloc() : memref // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[CST:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[CST_0:%.+]] = constant 0xFF800000 : f32 // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, %3#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to 10) { // CHECK: store [[CST]], [[SUM]][] : memref // CHECK: store [[CST_0]], [[MAX]][] : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load [[MAX]][] : memref // CHECK: [[LOAD2:%.+]] = load %arg0[%arg1, %arg2] : memref<10x10xf32> // CHECK: [[COND:%.+]] = cmpf "ogt", [[LOAD1]], [[LOAD2]] : f32 // CHECK: [[SELECT:%.+]] = select [[COND]], [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[SELECT]], [[MAX]][] : memref // CHECK: } // CHECK: %5 = load [[MAX]][] : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD1]] = load [[SUM]][] : memref // CHECK: [[LOAD2]] = load %arg0[%arg1, %arg2] : memref<10x10xf32> // CHECK: [[SUB:%.+]] = subf [[LOAD2]], %5 : f32 // CHECK: [[EXP:%.+]] = exp [[SUB]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[EXP]] : f32 // CHECK: store [[ADD]], [[SUM]][] : memref // CHECK: store %10, [[RES]][%arg1, %arg2] : memref<10x10xf32> // CHECK: } // CHECK: %6 = load [[SUM]][] : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD1]] = load [[RES]][%arg1, %arg2] : memref<10x10xf32> // CHECK: [[DIV:%.+]] = divf [[LOAD1]], %6 : f32 // CHECK: store [[DIV]], [[RES]][%arg1, %arg2] : memref<10x10xf32> // CHECK: } // CHECK: } // CHECK: dealloc [[SUM]] : memref // CHECK: dealloc [[MAX]] : memref // CHECK: return [[RES]] : memref<10x10xf32> } // ----- func @test_gemm(%arg0 : tensor<5x10xf32>, %arg1 : tensor<5x10xf32>, %arg2: tensor<10xf32>) -> tensor<*xf32> { %0 ="onnx.Gemm"(%arg0, %arg1, %arg2) {alpha = 1.0 : f32, beta = 5.0 : f32, transA = 1, transB = 0} : (tensor<5x10xf32>, tensor<5x10xf32>, tensor<10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_gemm // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[ALPHA:%.+]] = constant 1.000000e+00 : f32 // CHECK: [[BETA:%.+]] = constant 5.000000e+00 : f32 // CHECK: [[DEF_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1, [[DEF_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg3 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg4 = 0 to 10) { // CHECK: krnl.iterate([[OPT_LOOPS]]#2) with ([[DEF_LOOPS]]#2 -> %arg5 = 0 to 5) { // CHECK: [[A:%.+]] = load %arg0[%arg5, %arg3] : memref<5x10xf32> // CHECK: [[B:%.+]] = load %arg1[%arg5, %arg4] : memref<5x10xf32> // CHECK: [[Y:%.+]] = load [[RES]][%arg3, %arg4] : memref<10x10xf32> // CHECK: [[AB:%.+]] = mulf [[A]], [[B]] : f32 // CHECK: [[SUM:%.+]] = addf [[Y]], [[AB]] : f32 // CHECK: store [[SUM]], [[RES]][%arg3, %arg4] : memref<10x10xf32> // CHECK: } // CHECK: [[LOAD_Y:%.+]] = load [[RES]][%arg3, %arg4] : memref<10x10xf32> // CHECK: [[ALPHA_AB:%.+]] = mulf [[ALPHA]], [[LOAD_Y]] : f32 // CHECK: [[C:%.+]] = load %arg2[%arg4] : memref<10xf32> // CHECK: [[BETA_C:%.+]] = mulf [[BETA]], [[C]] : f32 // CHECK: [[Y_RES:%.+]] = addf [[ALPHA_AB]], [[BETA_C]] : f32 // CHECK: store [[Y_RES]], [[RES]][%arg3, %arg4] : memref<10x10xf32> // CHECK: } // CHECK: return [[RES]] : memref<10x10xf32> // CHECK: } } // ----- func @test_sqrt(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sqrt"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sqrt // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[SQRT:%.+]] = sqrt [[LOAD]] : f32 // CHECK: affine.store [[SQRT]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_unsqueeze(%arg0 : tensor<10x10xf32>) -> tensor<*xf32> { %0 = "onnx.Unsqueeze"(%arg0) {axes=[0,3]} : (tensor<10x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_unsqueeze // CHECK: [[RES:%.+]] = alloc() : memref<1x10x10x1xf32> // CHECK: [[INBYTES:%.+]] = constant 4 : i64 // CHECK: [[DIM1:%.+]] = constant 1 : i64 // CHECK: [[SIZE1:%.+]] = muli [[INBYTES]], [[DIM1]] : i64 // CHECK: [[DIM2:%.+]] = constant 10 : i64 // CHECK: [[SIZE2:%.+]] = muli [[SIZE1]], [[DIM2]] : i64 // CHECK: [[DIM3:%.+]] = constant 10 : i64 // CHECK: [[SIZE3:%.+]] = muli [[SIZE2]], [[DIM3]] : i64 // CHECK: [[DIM4:%.+]] = constant 1 : i64 // CHECK: [[SIZE4:%.+]] = muli [[SIZE3]], [[DIM4]] : i64 // CHECK: "krnl.memcpy"([[RES]], %arg0, [[SIZE4]]) : (memref<1x10x10x1xf32>, memref<10x10xf32>, i64) -> () // CHECK: return [[RES]] : memref<1x10x10x1xf32> } // ----- func @test_transpose(%arg0 : tensor<10x20x30x40xf32>) -> tensor<*xf32> { %0 = "onnx.Transpose"(%arg0) : (tensor<10x20x30x40xf32>) -> tensor<*xf32> %1 = "onnx.Transpose"(%0) {perm = [0, 3, 1, 2]} : (tensor<*xf32>) -> tensor<*xf32> "std.return"(%1) : (tensor<*xf32>) -> () // CHECK-LABEL: test_transpose // CHECK: [[RES0:%.+]] = alloc() : memref<40x10x30x20xf32> // CHECK: [[RES1:%.+]] = alloc() : memref<40x30x20x10xf32> // CHECK: [[LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1, [[LOOPS]]#2, [[LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1, [[OPT_LOOPS]]#2, [[OPT_LOOPS]]#3) with ([[LOOPS]]#0 -> %arg1 = 0 to 10, [[LOOPS]]#1 -> %arg2 = 0 to 20, [[LOOPS]]#2 -> %arg3 = 0 to 30, [[LOOPS]]#3 -> %arg4 = 0 to 40) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2, %arg3, %arg4] : memref<10x20x30x40xf32> // CHECK: store [[LOAD]], [[RES1]][%arg4, %arg3, %arg2, %arg1] : memref<40x30x20x10xf32> // CHECK: [[LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1, [[LOOPS]]#2, [[LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1, [[OPT_LOOPS]]#2, [[OPT_LOOPS]]#3) with ([[LOOPS]]#0 -> %arg1 = 0 to 40, [[LOOPS]]#1 -> %arg2 = 0 to 30, [[LOOPS]]#2 -> %arg3 = 0 to 20, [[LOOPS]]#3 -> %arg4 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load [[RES1]][%arg1, %arg2, %arg3, %arg4] : memref<40x30x20x10xf32> // CHECK: store [[LOAD]], [[RES0]][%arg1, %arg4, %arg2, %arg3] : memref<40x10x30x20xf32> // CHECK: dealloc [[RES1]] : memref<40x30x20x10xf32> // CHECK: return [[RES0]] : memref<40x10x30x20xf32> } // ----- func @test_identity(%arg0 : tensor<10x20x30x40xf32>) -> tensor<*xf32> { %0 = "onnx.Identity"(%arg0) : (tensor<10x20x30x40xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_identity // CHECK: return %arg0 : memref<10x20x30x40xf32> } // ----- func @test_sign_f(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sign"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sign_f // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[MINUS_ONE:%.+]] = constant {{-1.+}} : f32 // CHECK: [[GTZERO:%.+]] = cmpf "ogt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[SELECT_PLUS:%.+]] = select [[GTZERO]], [[ONE]], [[MINUS_ONE]] : f32 // CHECK: [[EQZERO:%.+]] = cmpf "oeq", [[LOAD]], [[ZERO]] : f32 // CHECK: [[SIGN_RES:%.+]] = select [[EQZERO]], [[ZERO]], [[SELECT_PLUS]] : f32 // CHECK: affine.store [[SIGN_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_sign_i(%arg0 : tensor) -> tensor<*xi32> { %0 = "onnx.Sign"(%arg0) : (tensor) -> tensor<*xi32> "std.return"(%0) : (tensor<*xi32>) -> () // CHECK-LABEL: test_sign_i // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant 0 : i32 // CHECK: [[ONE:%.+]] = constant 1 : i32 // CHECK: [[MINUS_ONE:%.+]] = constant -1 : i32 // CHECK: [[GTZERO:%.+]] = cmpi "sgt", [[LOAD]], [[ZERO]] : i32 // CHECK: [[SELECT_PLUS:%.+]] = select [[GTZERO]], [[ONE]], [[MINUS_ONE]] : i32 // CHECK: [[EQZERO:%.+]] = cmpi "eq", [[LOAD]], [[ZERO]] : i32 // CHECK: [[SIGN_RES:%.+]] = select [[EQZERO]], [[ZERO]], [[SELECT_PLUS]] : i32 // CHECK: affine.store [[SIGN_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- // 2-D x 2-D func @test_matmul1(%arg0 : tensor<10x5xf32>, %arg1 : tensor<5x10xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<10x5xf32>, tensor<5x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul1 // CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32> // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[LOOPS]]#0 -> %arg2 = 0 to 10, [[LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg4 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg2, %arg4] : memref<10x5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg4, %arg3] : memref<5x10xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref<10x10xf32> // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<10x10xf32> } // ----- // 2-D x N-D func @test_matmul2(%arg0 : tensor<10x5xf32>, %arg1 : tensor<2x3x5x10xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<10x5xf32>, tensor<2x3x5x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul2 // CHECK: [[RES:%.+]] = alloc() : memref<2x3x10x10xf32> // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1, [[LOOPS]]#2, [[LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[LOOPS]]#0 -> %arg2 = 0 to 2, [[LOOPS]]#1 -> %arg3 = 0 to 3) { // CHECK: krnl.iterate([[OPT_LOOPS]]#2, [[OPT_LOOPS]]#3) with ([[LOOPS]]#2 -> %arg4 = 0 to 10, [[LOOPS]]#3 -> %arg5 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg6 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg4, %arg6] : memref<10x5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg2, %arg3, %arg6, %arg5] : memref<2x3x5x10xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<2x3x10x10xf32> } // ----- // N-D x N-D func @test_matmul3(%arg0 : tensor<2x3x10x5xf32>, %arg1 : tensor<2x3x5x10xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<2x3x10x5xf32>, tensor<2x3x5x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul3 // CHECK: [[RES:%.+]] = alloc() : memref<2x3x10x10xf32> // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1, [[LOOPS]]#2, [[LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[LOOPS]]#0 -> %arg2 = 0 to 2, [[LOOPS]]#1 -> %arg3 = 0 to 3) { // CHECK: krnl.iterate([[OPT_LOOPS]]#2, [[OPT_LOOPS]]#3) with ([[LOOPS]]#2 -> %arg4 = 0 to 10, [[LOOPS]]#3 -> %arg5 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg6 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg2, %arg3, %arg4, %arg6] : memref<2x3x10x5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg2, %arg3, %arg6, %arg5] : memref<2x3x5x10xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<2x3x10x10xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<2x3x10x10xf32> } // ----- // 1-D x 2-D func @test_matmul4(%arg0 : tensor<5xf32>, %arg1 : tensor<5x10xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<5xf32>, tensor<5x10xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul4 // CHECK: [[RES:%.+]] = alloc() : memref<10xf32> // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS]]) with ([[LOOPS]] -> %arg2 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2] : memref<10xf32> // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg3 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg3] : memref<5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg3, %arg2] : memref<5x10xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2] : memref<10xf32> // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2] : memref<10xf32> // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<10xf32> } // ----- // 1-D x N-D func @test_matmul5(%arg0 : tensor<5xf32>, %arg1 : tensor) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<5xf32>, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul5 // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[DIM_0:%.+]] = dim %arg1, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_1:%.+]] = dim [[RES]], 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0) with ([[LOOPS]]#0 -> %arg2 = 0 to [[DIM_1]]) { // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2, %arg3] : memref // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg4 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg4] : memref<5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg2, %arg4, %arg3] : memref // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2, %arg3] : memref // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref } // ----- // N-D x 1-D func @test_matmul6(%arg0 : tensor, %arg1 : tensor<5xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor, tensor<5xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul6 // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS]]#0, [[LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_1:%.+]] = dim [[RES]], 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0) with ([[LOOPS]]#0 -> %arg2 = 0 to [[DIM_1]]) { // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: store [[CONSTANT]], [[RES]][%arg2, %arg3] : memref // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg4 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg2, %arg3, %arg4] : memref // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg4] : memref<5xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%arg2, %arg3] : memref // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref } // ----- // 1-D x 1-D func @test_matmul7(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> tensor<*xf32> { %0 ="onnx.MatMul"(%arg0, %arg1) : (tensor<5xf32>, tensor<5xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_matmul7 // CHECK: [[RES:%.+]] = alloc() : memref<1xf32> // CHECK: [[CONSTANT:%.+]] = constant 0.000000e+00 : f32 // CHECK: %[[CONSTANT_INDEX:.+]] = constant 0 : index // CHECK: store [[CONSTANT]], [[RES]][%[[CONSTANT_INDEX]]] : memref<1xf32> // CHECK: [[LOOPS_REDUCE:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS_REDUCE:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[LOOPS_REDUCE]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[OPT_LOOPS_REDUCE]]) with ([[LOOPS_REDUCE]] -> %arg2 = 0 to 5) { // CHECK: [[LOAD_0:%.+]] = load %arg0[%arg2] : memref<5xf32> // CHECK: [[LOAD_1:%.+]] = load %arg1[%arg2] : memref<5xf32> // CHECK: [[LOAD_RES:%.+]] = load [[RES]][%[[CONSTANT_INDEX]]] : memref<1xf32> // CHECK: [[MUL:%.+]] = mulf [[LOAD_0]], [[LOAD_1]] : f32 // CHECK: [[ADD:%.+]] = addf [[LOAD_RES]], [[MUL]] : f32 // CHECK: store [[ADD]], [[RES]][%[[CONSTANT_INDEX]]] : memref<1xf32> // CHECK: } // CHECK: return [[RES]] : memref<1xf32> } // ----- func @test_conv_no_bias_no_pad(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_no_pad // CHECK: [[RES:%.+]] = alloc() : memref<1x5x27x58xf32> // CHECK: [[CONST0:%.+]] = constant 5 : index // CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[CONST2:%.+]] = constant 2 : index // CHECK: [[OUTER_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_OUTER_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1) with ([[OUTER_LOOPS]]#0 -> %arg2 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg3 = 0 to 5) { // CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg4 = 0 to 27, [[SPATIAL_LOOPS]]#1 -> %arg5 = 0 to 58) { // CHECK: store [[CONST1]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32> // CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg6 = 0 to 2, [[INNER_LOOPS]]#1 -> %arg7 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg8 = 0 to 7) { // CHECK: [[R1PLUSK1:%.+]] = affine.apply #{{.*}}(%arg4, %arg7) // CHECK: [[R2PLUSK2:%.+]] = affine.apply #{{.*}}(%arg5, %arg8) // CHECK: [[DATA:%.+]] = affine.load %arg0[%arg2, %arg6, [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x2x32x64xf32> // CHECK: [[KERNEL:%.+]] = affine.load %arg1[%arg3, %arg6, %arg7, %arg8] : memref<5x2x6x7xf32> // CHECK: [[ACC_RES:%.+]] = affine.load %0[%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32> // CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32 // CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32 // CHECK: affine.store [[ADD]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x27x58xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<1x5x27x58xf32> } // ----- func @test_conv_bias_no_pad(%arg0 : tensor<1x2x32x64xf32>, %arg1 : tensor<5x2x6x7xf32>, %arg2 : tensor<5xf32>) -> tensor<*xf32> { %0 = "onnx.Conv"(%arg0, %arg1, %arg2) {auto_pad = "NOTSET", group = 1 : i64} : (tensor<1x2x32x64xf32>, tensor<5x2x6x7xf32>, tensor<5xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_bias_no_pad // CHECK: [[RES:%.+]] = alloc() : memref<1x5x27x58xf32> // CHECK: [[CONST0:%.+]] = constant 5 : index // CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[CONST2:%.+]] = constant 2 : index // CHECK: [[OUTER_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_OUTER_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1) with ([[OUTER_LOOPS]]#0 -> %arg3 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg4 = 0 to 5) { // CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg5 = 0 to 27, [[SPATIAL_LOOPS]]#1 -> %arg6 = 0 to 58) { // CHECK: store [[CONST1]], [[RES]][%arg3, %arg4, %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg7 = 0 to 2, [[INNER_LOOPS]]#1 -> %arg8 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg9 = 0 to 7) { // CHECK: [[R1PLUSK1:%.+]] = affine.apply #{{.*}}(%arg5, %arg8) // CHECK: [[R2PLUSK2:%.+]] = affine.apply #{{.*}}(%arg6, %arg9) // CHECK: [[DATA:%.+]] = affine.load %arg0[%arg3, %arg7, [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x2x32x64xf32> // CHECK: [[KERNEL:%.+]] = affine.load %arg1[%arg4, %arg7, %arg8, %arg9] : memref<5x2x6x7xf32> // CHECK: [[ACC_RES:%.+]] = affine.load %0[%arg3, %arg4, %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32 // CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32 // CHECK: affine.store [[ADD]], [[RES]][%arg3, %arg4, %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: } // CHECK: [[BIAS1:%.+]] = affine.load [[RES]][%arg3, %arg4, %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: [[BIAS2:%.+]] = affine.load %arg2[%arg4] : memref<5xf32> // CHECK: [[BIAS3:%.+]] = addf [[BIAS1]], [[BIAS2]] : f32 // CHECK: affine.store [[BIAS3]], [[RES]][%arg3, %arg4, %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<1x5x27x58xf32> } // ----- func @test_conv_no_bias_no_pad_w_group(%arg0 : tensor<1x9x32x64xf32>, %arg1 : tensor<5x3x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 3 : i64} : (tensor<1x9x32x64xf32>, tensor<5x3x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_no_pad_w_group // CHECK: [[RES:%.+]] = alloc() : memref<1x5x27x58xf32> // CHECK: [[CONST0:%.+]] = constant 1 : index // CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[CONST2:%.+]] = constant 3 : index // CHECK: [[OUTER_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_OUTER_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1, [[OUTER_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1, [[OPT_OUTER_LOOPS]]#2) with ([[OUTER_LOOPS]]#0 -> %arg2 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg3 = 0 to 3, [[OUTER_LOOPS]]#2 -> %arg4 = 0 to 1) { // CHECK: [[MUL1:%.+]] = muli %arg3, [[CONST0]] : index // CHECK: %[[ADD1:.+]] = addi [[MUL1]], %arg4 : index // CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg5 = 0 to 27, [[SPATIAL_LOOPS]]#1 -> %arg6 = 0 to 58) { // CHECK: store [[CONST1]], [[RES]][%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg7 = 0 to 3, [[INNER_LOOPS]]#1 -> %arg8 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg9 = 0 to 7) { // CHECK: [[ADD2:%.+]] = affine.apply #{{.*}}(%arg3, %arg7)[%c3] // CHECK: [[R1PLUSK1:%.+]] = affine.apply #{{.*}}(%arg5, %arg8) // CHECK: [[R2PLUSK2:%.+]] = affine.apply #{{.*}}(%arg6, %arg9) // CHECK: [[DATA:%.+]] = affine.load %arg0[%arg2, [[ADD2]], [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x9x32x64xf32> // CHECK: [[KERNEL:%.+]] = affine.load %arg1[%[[ADD1]], %arg7, %arg8, %arg9] : memref<5x3x6x7xf32> // CHECK: [[ACC_RES:%.+]] = affine.load %0[%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32 // CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32 // CHECK: affine.store [[ADD]], [[RES]][%arg2, %[[ADD1]], %arg5, %arg6] : memref<1x5x27x58xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<1x5x27x58xf32> } // ----- func @test_conv_no_bias_no_pad_w_strides(%arg0 : tensor<1x9x32x64xf32>, %arg1 : tensor<5x9x6x7xf32>) -> tensor<*xf32> { %cst = constant unit %0 = "onnx.Conv"(%arg0, %arg1, %cst) {auto_pad = "NOTSET", group = 1 : i64, strides = [2, 2]} : (tensor<1x9x32x64xf32>, tensor<5x9x6x7xf32>, none) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_conv_no_bias_no_pad_w_strides // CHECK: [[RES:%.+]] = alloc() : memref<1x5x14x29xf32> // CHECK: [[CONST0:%.+]] = constant 5 : index // CHECK: [[CONST1:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[CONST2:%.+]] = constant 9 : index // CHECK: [[OUTER_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_OUTER_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTER_LOOPS]]#0, [[OUTER_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTER_LOOPS]]#0, [[OPT_OUTER_LOOPS]]#1) with ([[OUTER_LOOPS]]#0 -> %arg2 = 0 to 1, [[OUTER_LOOPS]]#1 -> %arg3 = 0 to 5) { // CHECK: [[SPATIAL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_SPATIAL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[SPATIAL_LOOPS]]#0, [[SPATIAL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_SPATIAL_LOOPS]]#0, [[OPT_SPATIAL_LOOPS]]#1) with ([[SPATIAL_LOOPS]]#0 -> %arg4 = 0 to 14, [[SPATIAL_LOOPS]]#1 -> %arg5 = 0 to 29) { // CHECK: store [[CONST1]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x14x29xf32> // CHECK: [[INNER_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[OPT_INNER_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[INNER_LOOPS]]#0, [[INNER_LOOPS]]#1, [[INNER_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_INNER_LOOPS]]#0, [[OPT_INNER_LOOPS]]#1, [[OPT_INNER_LOOPS]]#2) with ([[INNER_LOOPS]]#0 -> %arg6 = 0 to 9, [[INNER_LOOPS]]#1 -> %arg7 = 0 to 6, [[INNER_LOOPS]]#2 -> %arg8 = 0 to 7) { // CHECK: [[R1PLUSK1:%.+]] = affine.apply #{{.*}}(%arg4, %arg7) // CHECK: [[R2PLUSK2:%.+]] = affine.apply #{{.*}}(%arg5, %arg8) // CHECK: [[DATA:%.+]] = affine.load %arg0[%arg2, %arg6, [[R1PLUSK1]], [[R2PLUSK2]]] : memref<1x9x32x64xf32> // CHECK: [[KERNEL:%.+]] = affine.load %arg1[%arg3, %arg6, %arg7, %arg8] : memref<5x9x6x7xf32> // CHECK: [[ACC_RES:%.+]] = affine.load %0[%arg2, %arg3, %arg4, %arg5] : memref<1x5x14x29xf32> // CHECK: [[MUL:%.+]] = mulf [[DATA]], [[KERNEL]] : f32 // CHECK: [[ADD:%.+]] = addf [[ACC_RES]], [[MUL]] : f32 // CHECK: affine.store [[ADD]], [[RES]][%arg2, %arg3, %arg4, %arg5] : memref<1x5x14x29xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<1x5x14x29xf32> } // ----- func @test_batchnorm_testmode_Nd(%arg0: tensor<1x2x1x3xf32>, %arg1: tensor<2xf32>, %arg2: tensor<2xf32>, %arg3: tensor<2xf32>, %arg4: tensor<2xf32>) -> tensor<1x2x1x3xf32> { %0 = "onnx.BatchNormalizationTestMode"(%arg0, %arg1, %arg2, %arg3, %arg4) : (tensor<1x2x1x3xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<1x2x1x3xf32> return %0 : tensor<1x2x1x3xf32> // CHECK-LABEL: test_batchnorm_testmode_Nd // CHECK: [[RES:%.+]] = alloc() : memref<1x2x1x3xf32> // CHECK: [[EPSILON:%.+]] = constant 9.99999974E-6 : f32 // CHECK: [[DEF_LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1, [[DEF_LOOPS]]#2, [[DEF_LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#1 -> %arg5 = 0 to 2) { // CHECK: [[SCALE:%.+]] = load %arg1[%arg5] : memref<2xf32> // CHECK: [[BIAS:%.+]] = load %arg2[%arg5] : memref<2xf32> // CHECK: [[MEAN:%.+]] = load %arg3[%arg5] : memref<2xf32> // CHECK: [[VARIANCE:%.+]] = load %arg4[%arg5] : memref<2xf32> // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#2, [[OPT_LOOPS]]#3) with ([[DEF_LOOPS]]#0 -> %arg6 = 0 to 1, [[DEF_LOOPS]]#2 -> %arg7 = 0 to 1, [[DEF_LOOPS]]#3 -> %arg8 = 0 to 3) { // CHECK: [[LOADED_VAL:%.+]] = load %arg0[%arg6, %arg5, %arg7, %arg8] : memref<1x2x1x3xf32> // CHECK: [[DIVIDEND:%.+]] = subf [[LOADED_VAL]], [[MEAN]] : f32 // CHECK: [[ADJUSTED_VARIANCE:%.+]] = addf [[VARIANCE]], [[EPSILON]] : f32 // CHECK: [[DIVISOR:%.+]] = sqrt [[ADJUSTED_VARIANCE]] : f32 // CHECK: [[NORM:%.+]] = divf [[DIVIDEND]], [[DIVISOR]] : f32 // CHECK: [[SCALE_NORM:%.+]] = mulf [[SCALE]], [[NORM]] : f32 // CHECK: [[SHIFT_SCALE_NORM:%.+]] = addf [[SCALE_NORM]], [[BIAS]] : f32 // CHECK: store [[SHIFT_SCALE_NORM]], [[RES]][%arg6, %arg5, %arg7, %arg8] : memref<1x2x1x3xf32> // CHECK: } // CHECK: } // CHECK: return [[RES]] : memref<1x2x1x3xf32> } // ----- func @test_batchnorm_testmode_1d(%arg0: tensor<10xf32>, %arg1: tensor<1xf32>, %arg2: tensor<1xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<10xf32> { %0 = "onnx.BatchNormalizationTestMode"(%arg0, %arg1, %arg2, %arg3, %arg4) : (tensor<10xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<10xf32> return %0 : tensor<10xf32> // CHECK-LABEL: test_batchnorm_testmode_1d // CHECK: [[RES:%.+]] = alloc() : memref<10xf32> // CHECK: [[EPSILON:%.+]] = constant 9.99999974E-6 : f32 // CHECK: [[DEF_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: %[[ZERO_INDEX:.+]] = constant 0 : index // CHECK: [[SCALE:%.+]] = load %arg1[%[[ZERO_INDEX]]] : memref<1xf32> // CHECK: [[BIAS:%.+]] = load %arg2[%[[ZERO_INDEX]]] : memref<1xf32> // CHECK: [[MEAN:%.+]] = load %arg3[%[[ZERO_INDEX]]] : memref<1xf32> // CHECK: [[VARIANCE:%.+]] = load %arg4[%[[ZERO_INDEX]]] : memref<1xf32> // CHECK: krnl.iterate([[OPT_LOOPS]]) with ([[DEF_LOOPS]] -> %arg5 = 0 to 10) { // CHECK: [[LOADED_VAL:%.+]] = load %arg0[%arg5] : memref<10xf32> // CHECK: [[DIVIDEND:%.+]] = subf [[LOADED_VAL]], [[MEAN]] : f32 // CHECK: [[ADJUSTED_VARIANCE:%.+]] = addf [[VARIANCE]], [[EPSILON]] : f32 // CHECK: [[DIVISOR:%.+]] = sqrt [[ADJUSTED_VARIANCE]] : f32 // CHECK: [[NORM:%.+]] = divf [[DIVIDEND]], [[DIVISOR]] : f32 // CHECK: [[SCALE_NORM:%.+]] = mulf [[SCALE]], [[NORM]] : f32 // CHECK: [[SHIFT_SCALE_NORM:%.+]] = addf [[SCALE_NORM]], [[BIAS]] : f32 // CHECK: store [[SHIFT_SCALE_NORM]], [[RES]][%arg5] : memref<10xf32> // CHECK: } // CHECK: return [[RES]] : memref<10xf32> } // ----- func @test_abs_float(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Abs"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_abs_float // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ABS:%.+]] = absf [[LOAD]] : f32 // CHECK: affine.store [[ABS]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_abs_int(%arg0 : tensor) -> tensor<*xi32> { %0 = "onnx.Abs"(%arg0) : (tensor) -> tensor<*xi32> "std.return"(%0) : (tensor<*xi32>) -> () // CHECK-LABEL: test_abs_int // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = affine.load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant 0 : i32 // CHECK: [[LESS_THAN_ZERO:%.+]] = cmpi "slt", [[LOAD]], [[ZERO]] : i32 // CHECK: [[NEGATIVE_LOAD:%.+]] = subi [[ZERO]], [[LOAD]] : i32 // CHECK: [[SELECT:%.+]] = select [[LESS_THAN_ZERO]], [[NEGATIVE_LOAD]], [[LOAD]] : i32 // CHECK: affine.store [[SELECT]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } // ----- func @test_constant_pad1(%arg0: tensor<16x16xf32>) -> tensor<18x20xf32> { %0 = "onnx.PadConstantValuePad"(%arg0) {constant_value = 0.000000e+00 : f32, mode = "constant", pads = [0, 3, 2, 1]} : (tensor<16x16xf32>) -> tensor<18x20xf32> return %0 : tensor<18x20xf32> // CHECK-LABEL: test_constant_pad1 // CHECK: [[RES:%.+]] = alloc() : memref<18x20xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 18, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 20) { // CHECK: [[CST:%.+]] = constant 0.000000e+00 : f32 // CHECK: store [[CST]], [[RES]][%arg1, %arg2] : memref<18x20xf32> // CHECK: } // CHECK: [[DEF_LOOPS2:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS2:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 16, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 16) { // CHECK: [[CST1:%.+]] = constant 3 : index // CHECK: [[ADD:%.+]] = addi [[CST1]], %arg2 : index // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<16x16xf32> // CHECK: store [[LOAD]], [[RES]][%arg1, [[ADD]]] : memref<18x20xf32> // CHECK: } } func @test_pad1(%arg0: tensor<16x16xf32>) -> tensor<18x20xf32> { %cst = constant unit %0 = "onnx.Pad"(%arg0, %cst, %cst) {constant_value = dense<0.000000e+00> : tensor<1xf32>, mode = "constant", pads = dense<[0, 3, 2, 1]> : tensor<4xi32>} : (tensor<16x16xf32>, none, none) -> tensor<18x20xf32> return %0 : tensor<18x20xf32> // CHECK-LABEL: test_pad1 // CHECK: [[RES:%.+]] = alloc() : memref<18x20xf32> // CHECK: [[DEF_LOOPS1:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS1:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1) with ([[DEF_LOOPS1]]#0 -> %arg1 = 0 to 18, [[DEF_LOOPS1]]#1 -> %arg2 = 0 to 20) { // CHECK: [[CST:%.+]] = constant 0.000000e+00 : f32 // CHECK: store [[CST]], [[RES]][%arg1, %arg2] : memref<18x20xf32> // CHECK: } // CHECK: [[DEF_LOOPS2:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS2:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1) with ([[DEF_LOOPS2]]#0 -> %arg1 = 0 to 16, [[DEF_LOOPS2]]#1 -> %arg2 = 0 to 16) { // CHECK: [[CST1:%.+]] = constant 3 : index // CHECK: [[ADD:%.+]] = addi [[CST1]], %arg2 : index // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<16x16xf32> // CHECK: store [[LOAD]], [[RES]][%arg1, [[ADD]]] : memref<18x20xf32> // CHECK: } } // ----- func @test_constant_dense_2d_value(%arg0: tensor<1xf32>) -> tensor<*xf32> { %0 = "onnx.Constant"() {value = dense<[[0.0, 0.0], [1.0, 1.1], [2.0, 2.1]]> : tensor<3x2xf32>} : () -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_constant_dense_2d_value // CHECK: [[RES:%.+]] = "krnl.global"() {name = "constant_0", shape = [3, 2], value = dense<{{.*}}[0.000000e+00, 0.000000e+00], [1.000000e+00, 1.100000e+00], [2.000000e+00, 2.100000e+00]{{.*}}> : tensor<3x2xf32>} : () -> memref<3x2xf32> // CHECK: return [[RES]] : memref<3x2xf32> } // ----- func @test_concat_1(%arg0 : tensor<5x5x1x32xf32>, %arg1 : tensor<5x5x3x32xf32>, %arg2 : tensor<5x5x5x32xf32>) -> tensor<5x5x9x32xf32> { %1 = "onnx.Concat"(%arg0, %arg1, %arg2) { axis = 2 } : (tensor<5x5x1x32xf32>, tensor<5x5x3x32xf32>, tensor<5x5x5x32xf32>) -> tensor<5x5x9x32xf32> "std.return"(%1) : (tensor<5x5x9x32xf32>) -> () // CHECK-LABEL: test_concat_1 // CHECK: [[RES:%.+]] = alloc() : memref<5x5x9x32xf32> // CHECK: [[DEF_LOOPS0:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS0:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS0]]#0, [[DEF_LOOPS0]]#1, [[DEF_LOOPS0]]#2, [[DEF_LOOPS0]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS0]]#0, [[OPT_LOOPS0]]#1, [[OPT_LOOPS0]]#2, [[OPT_LOOPS0]]#3) with ([[DEF_LOOPS0]]#0 -> %arg3 = 0 to 5, [[DEF_LOOPS0]]#1 -> %arg4 = 0 to 5, [[DEF_LOOPS0]]#2 -> %arg5 = 0 to 1, [[DEF_LOOPS0]]#3 -> %arg6 = 0 to 32) { // CHECK: [[LOAD0:%.+]] = load %arg0[%arg3, %arg4, %arg5, %arg6] : memref<5x5x1x32xf32> // CHECK: store [[LOAD0]], [[RES]][%arg3, %arg4, %arg5, %arg6] : memref<5x5x9x32xf32> // CHECK: [[DEF_LOOPS1:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS1:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS1]]#0, [[DEF_LOOPS1]]#1, [[DEF_LOOPS1]]#2, [[DEF_LOOPS1]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS1]]#0, [[OPT_LOOPS1]]#1, [[OPT_LOOPS1]]#2, [[OPT_LOOPS1]]#3) with ([[DEF_LOOPS1]]#0 -> %arg3 = 0 to 5, [[DEF_LOOPS1]]#1 -> %arg4 = 0 to 5, [[DEF_LOOPS1]]#2 -> %arg5 = 0 to 3, [[DEF_LOOPS1]]#3 -> %arg6 = 0 to 32) { // CHECK: [[OFF1:%.+]] = constant 1 : index // CHECK: [[ADD1:%.+]] = addi [[OFF1]], %arg5 : index // CHECK: [[LOAD1:%.+]] = load %arg1[%arg3, %arg4, %arg5, %arg6] : memref<5x5x3x32xf32> // CHECK: store [[LOAD1]], [[RES]][%arg3, %arg4, [[ADD1]], %arg6] : memref<5x5x9x32xf32> // CHECK: [[DEF_LOOPS2:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_LOOPS2:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS2]]#0, [[DEF_LOOPS2]]#1, [[DEF_LOOPS2]]#2, [[DEF_LOOPS2]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_LOOPS2]]#0, [[OPT_LOOPS2]]#1, [[OPT_LOOPS2]]#2, [[OPT_LOOPS2]]#3) with ([[DEF_LOOPS2]]#0 -> %arg3 = 0 to 5, [[DEF_LOOPS2]]#1 -> %arg4 = 0 to 5, [[DEF_LOOPS2]]#2 -> %arg5 = 0 to 5, [[DEF_LOOPS2]]#3 -> %arg6 = 0 to 32) { // CHECK: [[OFF2:%.+]] = constant 4 : index // CHECK: [[ADD2:%.+]] = addi [[OFF2]], %arg5 : index // CHECK: [[LOAD2:%.+]] = load %arg2[%arg3, %arg4, %arg5, %arg6] : memref<5x5x5x32xf32> // CHECK: store [[LOAD2]], [[RES]][%arg3, %arg4, [[ADD2]], %arg6] : memref<5x5x9x32xf32> // CHECK: return [[RES]] : memref<5x5x9x32xf32> } // ----- func @test_pool_general_computation(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-DAG: #{{.*}} = affine_map<(d0)[s0, s1, s2, s3, s4] -> ((s2 ceildiv s4) * s4 - s2, d0 * s3 - s2)> // CHECK-DAG: #{{.*}} = affine_map<(d0)[s0, s1, s2, s3, s4] -> (s0, d0 * s3 + (s1 - 1) * s4 - s2 + 1)> // CHECK-DAG: #{{.*}} = affine_map<() -> (0)> // CHECK-DAG: #{{.*}} = affine_map<(d0)[s0, s1, s2, s3, s4] -> (s0 - ((s2 ceildiv s4) * s4 - s2), -(d0 * s3 - s2) + s0, d0 * s3 + (s1 - 1) * s4 - s2 - ((s2 ceildiv s4) * s4 - s2) + 1, d0 * s3 + (s1 - 1) * s4 - s2 - (d0 * s3 - s2) + 1)> // CHECK-LABEL: @test_pool_general_computation // CHECK: [[RES:%.+]] = alloc() : memref<1x3x31x31xf32> // CHECK: [[IDENTITY:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[OUTPUT_LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_OUTPUT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTPUT_LOOPS]]#0, [[OUTPUT_LOOPS]]#1, [[OUTPUT_LOOPS]]#2, [[OUTPUT_LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTPUT_LOOPS]]#0, [[OPT_OUTPUT_LOOPS]]#1, [[OPT_OUTPUT_LOOPS]]#2, [[OPT_OUTPUT_LOOPS]]#3) with ([[OUTPUT_LOOPS]]#0 -> %arg1 = 0 to 1, [[OUTPUT_LOOPS]]#1 -> %arg2 = 0 to 3, [[OUTPUT_LOOPS]]#2 -> %arg3 = 0 to 31, [[OUTPUT_LOOPS]]#3 -> %arg4 = 0 to 31) { // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: [[POOL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_POOL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[POOL_LOOPS]]#0, [[POOL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_POOL_LOOPS]]#0, [[OPT_POOL_LOOPS]]#1) with ([[POOL_LOOPS]]#0 -> %arg5 = 0 to min #map3(%arg3)[%c32, %c2, %c0, %c1, %c1_0], [[POOL_LOOPS]]#1 -> %arg6 = 0 to min #map3(%arg4)[%c32_1, %c2_2, %c0_3, %c1_4, %c1_5]) { // CHECK: {{.*}} = load %arg0[%arg1, %arg2, {{.*}}, {{.*}}] : memref<1x3x32x32xf32> // CHECK: {{.*}} = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: store {{.*}}, [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } // CHECK: {{.*}} = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: store {{.*}}, [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } } // ----- func @test_pool_unknown_dimensions(%arg0 : tensor<1x3x?x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x?x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-DAG: #[[AFFINE_MAP:.+]] = affine_map<(d0)[s0, s1, s2, s3] -> ((d0 + s1 - (s0 - 1) * s3 - 1) floordiv s2 + 1)> // CHECK-LABEL: test_pool_unknown_dimensions // CHECK: [[DIM:%.+]] = dim %arg0, 2 : memref<1x3x?x32xf32> // CHECK: [[KERNEL:%.+]] = constant 2 : index // CHECK: [[PAD:%.+]] = constant 0 : index // CHECK: [[STRIDE:%.+]] = constant 1 : index // CHECK: [[DILATION:%.+]] = constant 1 : index // CHECK: [[AFFINE_APPLY:%.+]] = affine.apply #[[AFFINE_MAP]]([[DIM]]){{.*}}[[KERNEL]], [[PAD]], [[STRIDE]], [[DILATION]]{{.*}} // CHECK: [[RES:%.+]] = alloc([[AFFINE_APPLY]]) : memref<1x3x?x31xf32> } // ----- func @test_averagepool_identity_value(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: @test_averagepool_identity_value // CHECK: [[RES:%.+]] = alloc() : memref<1x3x31x31xf32> // CHECK: [[IDENTITY:%.+]] = constant 0.000000e+00 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> } // ----- func @test_maxpool_identity_value(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: @test_maxpool_identity_value // CHECK: [[RES:%.+]] = alloc() : memref<1x3x31x31xf32> // CHECK: [[IDENTITY:%.+]] = constant 0xFF800000 : f32 // CHECK: store [[IDENTITY]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> } // ----- func @test_averagepool_pooling_operation(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.AveragePool"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: @test_averagepool_pooling_operation // CHECK: [[RES:%.+]] = alloc() : memref<1x3x31x31xf32> // CHECK: [[OUTPUT_LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_OUTPUT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTPUT_LOOPS]]#0, [[OUTPUT_LOOPS]]#1, [[OUTPUT_LOOPS]]#2, [[OUTPUT_LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTPUT_LOOPS]]#0, [[OPT_OUTPUT_LOOPS]]#1, [[OPT_OUTPUT_LOOPS]]#2, [[OPT_OUTPUT_LOOPS]]#3) with ([[OUTPUT_LOOPS]]#0 -> %arg1 = 0 to 1, [[OUTPUT_LOOPS]]#1 -> %arg2 = 0 to 3, [[OUTPUT_LOOPS]]#2 -> %arg3 = 0 to 31, [[OUTPUT_LOOPS]]#3 -> %arg4 = 0 to 31) { // CHECK: [[POOL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_POOL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[POOL_LOOPS]]#0, [[POOL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_POOL_LOOPS]]#0, [[OPT_POOL_LOOPS]]#1) with ([[POOL_LOOPS]]#0 -> %arg5 = 0 to min #map3(%arg3)[%c32, %c2, %c0, %c1, %c1_0], [[POOL_LOOPS]]#1 -> %arg6 = 0 to min #map3(%arg4)[%c32_1, %c2_2, %c0_3, %c1_4, %c1_5]) { // CHECK: [[INPUT_LOAD:%.+]] = load %arg0[%arg1, %arg2, {{.*}}, {{.*}}] : memref<1x3x32x32xf32> // CHECK: [[OUTPUT_LOAD:%.+]] = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: [[SUM:%.+]] = addf [[OUTPUT_LOAD]], [[INPUT_LOAD]] : f32 // CHECK: store [[SUM]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } // CHECK: [[NUMERATOR:%.+]] = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: [[AVERAGE:%.+]] = divf [[NUMERATOR]], {{.*}} : f32 // CHECK: store [[AVERAGE]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } } // ----- func @test_maxpool_pooling_operation(%arg0 : tensor<1x3x32x32xf32>) -> tensor<*xf32> { %0 = "onnx.MaxPoolSingleOut"(%arg0) {auto_pad = "NOTSET", kernel_shape = [2, 2]} : (tensor<1x3x32x32xf32>) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: @test_maxpool_pooling_operation // CHECK: [[RES:%.+]] = alloc() : memref<1x3x31x31xf32> // CHECK: [[OUTPUT_LOOPS:%.+]]:4 = krnl.define_loops 4 // CHECK: [[OPT_OUTPUT_LOOPS:%.+]]:4 = krnl.optimize_loops { // CHECK: krnl.return_loops [[OUTPUT_LOOPS]]#0, [[OUTPUT_LOOPS]]#1, [[OUTPUT_LOOPS]]#2, [[OUTPUT_LOOPS]]#3 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_OUTPUT_LOOPS]]#0, [[OPT_OUTPUT_LOOPS]]#1, [[OPT_OUTPUT_LOOPS]]#2, [[OPT_OUTPUT_LOOPS]]#3) with ([[OUTPUT_LOOPS]]#0 -> %arg1 = 0 to 1, [[OUTPUT_LOOPS]]#1 -> %arg2 = 0 to 3, [[OUTPUT_LOOPS]]#2 -> %arg3 = 0 to 31, [[OUTPUT_LOOPS]]#3 -> %arg4 = 0 to 31) { // CHECK: [[POOL_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_POOL_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[POOL_LOOPS]]#0, [[POOL_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[OPT_POOL_LOOPS]]#0, [[OPT_POOL_LOOPS]]#1) with ([[POOL_LOOPS]]#0 -> %arg5 = 0 to min #map3(%arg3)[%c32, %c2, %c0, %c1, %c1_0], [[POOL_LOOPS]]#1 -> %arg6 = 0 to min #map3(%arg4)[%c32_1, %c2_2, %c0_3, %c1_4, %c1_5]) { // CHECK: [[INPUT_LOAD:%.+]] = load %arg0[%arg1, %arg2, {{.*}}, {{.*}}] : memref<1x3x32x32xf32> // CHECK: [[OUTPUT_LOAD:%.+]] = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: [[GREATER:%.+]] = cmpf "ogt", [[OUTPUT_LOAD]], [[INPUT_LOAD]] : f32 // CHECK: [[SELECT:%.+]] = select [[GREATER]], [[OUTPUT_LOAD]], [[INPUT_LOAD]] : f32 // CHECK: store [[SELECT]], [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } // CHECK-NOT: {{.*}} = load [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK-NOT: store {{.*}}, [[RES]][%arg1, %arg2, %arg3, %arg4] : memref<1x3x31x31xf32> // CHECK: } } // ----- func @test_lstm_general_computation(%arg0: tensor<4x3x2xf32>, %arg1: tensor<1x12x2xf32>, %arg2: tensor<1x12x3xf32>) -> tensor<*xf32> { %cst = constant unit %Y, %Y_h, %Y_c = "onnx.LSTM"(%arg0, %arg1, %arg2, %cst, %cst, %cst, %cst, %cst) {hidden_size = 3 : i64} : (tensor<4x3x2xf32>, tensor<1x12x2xf32>, tensor<1x12x3xf32>, none, none, none, none, none) -> (none, tensor<*xf32>, none) return %Y_h : tensor<*xf32> // CHECK-DAG: [[ACCESS_BY_OFFSET_MAP:#.+]] = affine_map<(d0)[s0, s1] -> (d0 + s0 * s1)> // CHECK-LABEL: @test_lstm_general_computation // CHECK: [[CELL_STATE:%.+]] = alloc() : memref<1x3x3xf32> // CHECK: [[HIDDEN_STATE:%.+]] = alloc() : memref<1x3x3xf32> // CHECK: {{.*}} = constant unit // CHECK: [[INITIAL_VALUE:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[INITIALIZE_LOOPS:%.+]]:3 = krnl.define_loops 3 // CHECK: [[INITIALIZE_OPT_LOOPS:%.+]]:3 = krnl.optimize_loops { // CHECK: krnl.return_loops [[INITIALIZE_LOOPS]]#0, [[INITIALIZE_LOOPS]]#1, [[INITIALIZE_LOOPS]]#2 // CHECK: } : () -> (!krnl.loop, !krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[INITIALIZE_OPT_LOOPS]]#0, [[INITIALIZE_OPT_LOOPS]]#1, [[INITIALIZE_OPT_LOOPS]]#2) with ([[INITIALIZE_LOOPS]]#0 -> %arg3 = 0 to 1, [[INITIALIZE_LOOPS]]#1 -> %arg4 = 0 to 3, [[INITIALIZE_LOOPS]]#2 -> %arg5 = 0 to 3) { // CHECK: store [[INITIAL_VALUE]], [[HIDDEN_STATE]][%arg3, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: store [[INITIAL_VALUE]], [[CELL_STATE]][%arg3, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: } // CHECK: [[SEQUENCE_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[SEQUENCE_OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[SEQUENCE_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[SEQUENCE_OPT_LOOPS]]) with ([[SEQUENCE_LOOPS]] -> %arg3 = 0 to 4) { // CHECK: {{.*}} = constant 0 : index // CHECK: {{.*}} = constant 3 : index // CHECK: {{.*}} = constant 0 : index // CHECK: {{.*}} = constant 1 : index // CHECK: {{.*}} = constant 2 : index // CHECK: {{.*}} = constant 3 : index // CHECK: {{.*}} = constant 4 : index // CHECK: {{.*}} = constant 5 : index // CHECK: {{.*}} = constant 6 : index // CHECK: {{.*}} = constant 7 : index // CHECK: [[DATA_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[DATA_OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DATA_LOOPS]]#0, [[DATA_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: krnl.iterate([[DATA_OPT_LOOPS]]#0, [[DATA_OPT_LOOPS]]#1) with ([[DATA_LOOPS]]#0 -> %arg4 = 0 to 3, [[DATA_LOOPS]]#1 -> %arg5 = 0 to 3) { // CHECK: [[hCt:%.+]] = alloc() : memref // CHECK: [[Ot:%.+]] = alloc() : memref // CHECK: [[ct:%.+]] = alloc() : memref // CHECK: [[Ft:%.+]] = alloc() : memref // CHECK: [[It:%.+]] = alloc() : memref // CHECK: [[Ht1_LOAD:%.+]] = load [[HIDDEN_STATE]][%c0, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: [[Ct1_LOAD:%.+]] = load [[CELL_STATE]][%c0, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: [[ZERO_FLOAT:%.+]] = constant 0.000000e+00 : f32 // CHECK: [[XtWi_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[XtWi_GEMM]][] : memref // CHECK: [[Ht1Ri_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[Ht1Ri_GEMM]][] : memref // CHECK: [[XtWo_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[XtWo_GEMM]][] : memref // CHECK: [[Ht1Ro_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[Ht1Ro_GEMM]][] : memref // CHECK: [[XtWf_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[XtWf_GEMM]][] : memref // CHECK: [[Ht1Rf_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[Ht1Rf_GEMM]][] : memref // CHECK: [[XtWc_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[XtWc_GEMM]][] : memref // CHECK: [[Ht1Rc_GEMM:%.+]] = alloc() : memref // CHECK: store [[ZERO_FLOAT]], [[Ht1Rc_GEMM]][] : memref // CHECK: [[REDUCTION_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[REDUCTION_OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[REDUCTION_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[REDUCTION_OPT_LOOPS]]) with ([[REDUCTION_LOOPS]] -> %arg6 = 0 to 2) { // CHECK: [[INPUT_HIDDEN_INDEX:%.+]] = affine.apply #{{.*}}(%arg5)[%c0_1, %c3] // CHECK: [[OUTPUT_HIDDEN_INDEX:%.+]] = affine.apply #{{.*}}(%arg5)[%c1, %c3] // CHECK: [[FORGET_HIDDEN_INDEX:%.+]] = affine.apply #{{.*}}(%arg5)[%c2, %c3] // CHECK: [[CELL_HIDDEN_INDEX:%.+]] = affine.apply #{{.*}}(%arg5)[%c3_2, %c3] // CHECK: [[Xt_LOAD:%.+]] = load %arg0[%arg3, %arg4, %arg6] : memref<4x3x2xf32> // CHECK: [[Wi_LOAD:%.+]] = load %arg1[%c0, [[INPUT_HIDDEN_INDEX]], %arg6] : memref<1x12x2xf32> // CHECK: {{.*}} = mulf [[Xt_LOAD]], [[Wi_LOAD]] : f32 // CHECK: {{.*}} = load [[XtWi_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[XtWi_GEMM]][] : memref // CHECK: [[Ri_LOAD:%.+]] = load %arg2[%c0, [[INPUT_HIDDEN_INDEX]], %arg6] : memref<1x12x3xf32> // CHECK: {{.*}} = mulf [[Ht1_LOAD]], [[Ri_LOAD]] : f32 // CHECK: {{.*}} = load [[Ht1Ri_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[Ht1Ri_GEMM]][] : memref // CHECK: [[Wo_LOAD:%.+]] = load %arg1[%c0, [[OUTPUT_HIDDEN_INDEX]], %arg6] : memref<1x12x2xf32> // CHECK: {{.*}} = mulf [[Xt_LOAD]], [[Wo_LOAD]] : f32 // CHECK: {{.*}} = load [[XtWo_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[XtWo_GEMM]][] : memref // CHECK: [[Ro_LOAD:%.+]] = load %arg2[%c0, [[OUTPUT_HIDDEN_INDEX]], %arg6] : memref<1x12x3xf32> // CHECK: {{.*}} = mulf [[Ht1_LOAD]], [[Ro_LOAD]] : f32 // CHECK: {{.*}} = load [[Ht1Ro_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[Ht1Ro_GEMM]][] : memref // CHECK: [[Wf_LOAD:%.+]] = load %arg1[%c0, [[FORGET_HIDDEN_INDEX]], %arg6] : memref<1x12x2xf32> // CHECK: {{.*}} = mulf [[Xt_LOAD]], [[Wf_LOAD]] : f32 // CHECK: {{.*}} = load [[XtWf_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[XtWf_GEMM]][] : memref // CHECK: [[Rf_LOAD:%.+]] = load %arg2[%c0, [[FORGET_HIDDEN_INDEX]], %arg6] : memref<1x12x3xf32> // CHECK: {{.*}} = mulf [[Ht1_LOAD]], [[Rf_LOAD]] : f32 // CHECK: {{.*}} = load [[Ht1Rf_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[Ht1Rf_GEMM]][] : memref // CHECK: [[Wc_LOAD:%.+]] = load %arg1[%c0, [[CELL_HIDDEN_INDEX]], %arg6] : memref<1x12x2xf32> // CHECK: {{.*}} = mulf [[Xt_LOAD]], [[Wc_LOAD]] : f32 // CHECK: {{.*}} = load [[XtWc_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[XtWc_GEMM]][] : memref // CHECK: [[Rc_LOAD:%.+]] = load %arg2[%c0, [[CELL_HIDDEN_INDEX]], %arg6] : memref<1x12x3xf32> // CHECK: {{.*}} = mulf [[Ht1_LOAD]], [[Rc_LOAD]] : f32 // CHECK: {{.*}} = load [[Ht1Rc_GEMM]][] : memref // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: store {{.*}}, [[Ht1Rc_GEMM]][] : memref // CHECK: } // CHECK: [[XtWi_LOAD:%.+]] = load [[XtWi_GEMM]][] : memref // CHECK: [[Ht1Ri_LOAD:%.+]] = load [[Ht1Ri_GEMM]][] : memref // CHECK: [[It_OUTPUT:%.+]] = addf [[XtWi_LOAD]], [[Ht1Ri_LOAD]] : f32 // CHECK: [[SIGMOID_INPUT:%.+]] = alloc() : memref // CHECK: store [[It_OUTPUT]], [[SIGMOID_INPUT]][] : memref // CHECK: {{.*}} = affine.load [[SIGMOID_INPUT]][] : memref // CHECK: {{.*}} = constant 0.000000e+00 : f32 // CHECK: {{.*}} = constant 1.000000e+00 : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}}: f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = divf {{.*}}, {{.*}} : f32 // CHECK: affine.store {{.*}}, [[It]][] : memref // CHECK: [[It_LOAD:%.+]] = load [[It]][] : memref // CHECK: [[XtWf_LOAD:%.+]] = load [[XtWf_GEMM]][] : memref // CHECK: [[Ht1Rf_LOAD:%.+]] = load [[Ht1Rf_GEMM]][] : memref // CHECK: [[Ft_OUTPUT:%.+]] = addf [[XtWf_LOAD]], [[Ht1Rf_LOAD]] : f32 // CHECK: [[SIGMOID_FORGET:%.+]] = alloc() : memref // CHECK: store [[Ft_OUTPUT]], [[SIGMOID_FORGET]][] : memref // CHECK: {{.*}} = affine.load [[SIGMOID_FORGET]][] : memref // CHECK: {{.*}} = constant 0.000000e+00 : f32 // CHECK: {{.*}} = constant 1.000000e+00 : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}}: f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = divf {{.*}}, {{.*}} : f32 // CHECK: affine.store {{.*}}, [[Ft]][] : memref // CHECK: [[Ft_LOAD:%.+]] = load [[Ft]][] : memref // CHECK: [[XtWc_LOAD:%.+]] = load [[XtWc_GEMM]][] : memref // CHECK: [[Ht1Rc_LOAD:%.+]] = load [[Ht1Rc_GEMM]][] : memref // CHECK: [[ct_OUTPUT:%.+]] = addf [[XtWc_LOAD]], [[Ht1Rc_LOAD]] : f32 // CHECK: [[TANH_CELL:%.+]] = alloc() : memref // CHECK: store [[ct_OUTPUT]], [[TANH_CELL]][] : memref // CHECK: {{.*}} = affine.load [[TANH_CELL]][] : memref // CHECK: {{.*}} = constant 0.000000e+00 : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = divf {{.*}}, {{.*}} : f32 // CHECK: affine.store {{.*}}, [[ct]][] : memref // CHECK: [[ct_LOAD:%.+]] = load [[ct]][] : memref // CHECK: [[FtCt1:%.+]] = mulf [[Ft_LOAD]], [[Ct1_LOAD]] : f32 // CHECK: [[Itct:%.+]] = mulf [[It_LOAD]], [[ct_LOAD]] : f32 // CHECK: [[Ct:%.+]] = addf [[FtCt1]], [[Itct]] : f32 // CHECK: store [[Ct]], [[CELL_STATE]][%c0, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: [[XtWo_LOAD:%.+]] = load [[XtWo_GEMM]][] : memref // CHECK: [[Ht1Ro_LOAD:%.+]] = load [[Ht1Ro_GEMM]][] : memref // CHECK: [[Ot_OUTPUT:%.+]] = addf [[XtWo_LOAD]], [[Ht1Ro_LOAD]] : f32 // CHECK: [[SIGMOID_OUTPUT:%.+]] = alloc() : memref // CHECK: store [[Ot_OUTPUT]], [[SIGMOID_OUTPUT]][] : memref // CHECK: {{.*}} = affine.load [[SIGMOID_OUTPUT]][] : memref // CHECK: {{.*}} = constant 0.000000e+00 : f32 // CHECK: {{.*}} = constant 1.000000e+00 : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}}: f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = divf {{.*}}, {{.*}} : f32 // CHECK: affine.store {{.*}}, [[Ot]][] : memref // CHECK: [[Ot_LOAD:%.+]] = load [[Ot]][] : memref // CHECK: [[TANH_HIDDEN:%.+]] = alloc() : memref // CHECK: store [[Ct]], [[TANH_HIDDEN]][] : memref // CHECK: {{.*}} = affine.load [[TANH_HIDDEN]][] : memref // CHECK: {{.*}} = constant 0.000000e+00 : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = exp {{.*}} : f32 // CHECK: {{.*}} = subf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = divf {{.*}}, {{.*}} : f32 // CHECK: affine.store {{.*}}, [[hCt]][] : memref // CHECK: [[hCt_LOAD:%.+]] = load [[hCt]][] : memref // CHECK: [[Ht:%.+]] = mulf [[Ot_LOAD]], [[hCt_LOAD]] : f32 // CHECK: store [[Ht]], [[HIDDEN_STATE]][%c0, %arg4, %arg5] : memref<1x3x3xf32> // CHECK: dealloc [[XtWi_GEMM]] : memref // CHECK: dealloc [[XtWo_GEMM]] : memref // CHECK: dealloc [[XtWf_GEMM]] : memref // CHECK: dealloc [[XtWc_GEMM]] : memref // CHECK: dealloc [[Ht1Ri_GEMM]] : memref // CHECK: dealloc [[Ht1Ro_GEMM]] : memref // CHECK: dealloc [[Ht1Rf_GEMM]] : memref // CHECK: dealloc [[Ht1Rc_GEMM]] : memref // CHECK: dealloc [[It]] : memref // CHECK: dealloc [[Ft]] : memref // CHECK: dealloc [[ct]] : memref // CHECK: dealloc [[Ot]] : memref // CHECK: dealloc [[hCt]] : memref // CHECK: } // CHECK: } // CHECK: dealloc [[CELL_STATE]] : memref<1x3x3xf32> // CHECK: return [[HIDDEN_STATE]] : memref<1x3x3xf32> } // ----- func @test_lstm_reverse_mode(%arg0: tensor<4x3x2xf32>, %arg1: tensor<1x12x2xf32>, %arg2: tensor<1x12x3xf32>) -> tensor<*xf32> { %cst = constant unit %Y, %Y_h, %Y_c = "onnx.LSTM"(%arg0, %arg1, %arg2, %cst, %cst, %cst, %cst, %cst) {hidden_size = 3 : i64, direction = "reverse"} : (tensor<4x3x2xf32>, tensor<1x12x2xf32>, tensor<1x12x3xf32>, none, none, none, none, none) -> (none, tensor<*xf32>, none) return %Y_h : tensor<*xf32> // CHECK: [[REVERSE_IV_MAP:#.+]] = affine_map<(d0)[s0] -> (-d0 + s0 - 1)> // CHECK-LABEL: @test_lstm_reverse_mode // CHECK: [[REVERSE_SEQUENCE_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[REVERSE_SEQUENCE_OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[REVERSE_SEQUENCE_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[REVERSE_SEQUENCE_OPT_LOOPS]]) with ([[REVERSE_SEQUENCE_LOOPS]] -> %arg3 = 0 to 4) { // CHECK: %[[SEQUENCE_LEN:.+]] = constant 4 : index // CHECK: %[[REVERSE_SEQUENCE_IV:.+]] = affine.apply [[REVERSE_IV_MAP]](%arg3)[%[[SEQUENCE_LEN]]{{]}} // CHECK: [[Xt_LOAD:%.+]] = load %arg0[%[[REVERSE_SEQUENCE_IV]], {{.*}}, {{.*}}] : memref<4x3x2xf32> } // ----- func @test_lstm_bidirectional_mode(%arg0: tensor<4x3x2xf32>, %arg1: tensor<1x12x2xf32>, %arg2: tensor<1x12x3xf32>) -> tensor<*xf32> { %cst = constant unit %Y, %Y_h, %Y_c = "onnx.LSTM"(%arg0, %arg1, %arg2, %cst, %cst, %cst, %cst, %cst) {hidden_size = 3 : i64, direction = "bidirectional"} : (tensor<4x3x2xf32>, tensor<1x12x2xf32>, tensor<1x12x3xf32>, none, none, none, none, none) -> (none, tensor<*xf32>, none) return %Y_h : tensor<*xf32> // CHECK: [[REVERSE_IV_MAP:#.+]] = affine_map<(d0)[s0] -> (-d0 + s0 - 1)> // CHECK-LABEL: @test_lstm_bidirectional_mode // CHECK: [[SEQUENCE_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[SEQUENCE_OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[SEQUENCE_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[SEQUENCE_OPT_LOOPS]]) with ([[SEQUENCE_LOOPS]] -> %arg3 = 0 to 4) { // CHECK: [[Xt_LOAD:%.+]] = load %arg0[%arg3, {{.*}}, {{.*}}] : memref<4x3x2xf32> // CHECK: [[REVERSE_SEQUENCE_LOOPS:%.+]] = krnl.define_loops 1 // CHECK: [[REVERSE_SEQUENCE_OPT_LOOPS:%.+]] = krnl.optimize_loops { // CHECK: krnl.return_loops [[REVERSE_SEQUENCE_LOOPS]] // CHECK: } : () -> !krnl.loop // CHECK: krnl.iterate([[REVERSE_SEQUENCE_OPT_LOOPS]]) with ([[REVERSE_SEQUENCE_LOOPS]] -> %arg3 = 0 to 4) { // CHECK: %[[SEQUENCE_LEN:.+]] = constant 4 : index // CHECK: %[[REVERSE_SEQUENCE_IV:.+]] = affine.apply [[REVERSE_IV_MAP]](%arg3)[%[[SEQUENCE_LEN]]{{]}} // CHECK: [[Xt_LOAD:%.+]] = load %arg0[%[[REVERSE_SEQUENCE_IV]], {{.*}}, {{.*}}] : memref<4x3x2xf32> }