// RUN: onnf-opt --shape-inference --lower-frontend %s -split-input-file | FileCheck %s func @test_add(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Add"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_add // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[ADDF]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_mul(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Mul"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_mul // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[MULF:%.+]] = mulf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[MULF]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_div(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Div"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_div // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[DIVF:%.+]] = divf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[DIVF]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_sub(%arg0 : tensor, %arg1 : tensor) -> tensor<*xf32> { %0 = "onnx.Sub"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sub // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[SUBF:%.+]] = subf [[LOAD1]], [[LOAD2]] : f32 // CHECK: store [[SUBF]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_and(%arg0 : tensor, %arg1 : tensor) -> tensor<*xi32> { %0 = "onnx.And"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xi32> "std.return"(%0) : (tensor<*xi32>) -> () // CHECK-LABEL: test_and // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[AND:%.+]] = and [[LOAD1]], [[LOAD2]] : i32 // CHECK: store [[AND]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_or(%arg0 : tensor, %arg1 : tensor) -> tensor<*xi32> { %0 = "onnx.Or"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xi32> "std.return"(%0) : (tensor<*xi32>) -> () // CHECK-LABEL: test_or // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[OR:%.+]] = or [[LOAD1]], [[LOAD2]] : i32 // CHECK: store [[OR]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_xor(%arg0 : tensor, %arg1 : tensor) -> tensor<*xi32> { %0 = "onnx.Xor"(%arg0, %arg1) : (tensor, tensor) -> tensor<*xi32> "std.return"(%0) : (tensor<*xi32>) -> () // CHECK-LABEL: test_xor // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) { // CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref // CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref // CHECK: [[XOR:%.+]] = xor [[LOAD1]], [[LOAD2]] : i32 // CHECK: store [[XOR]], [[RES]][%arg2, %arg3] : memref // CHECK: return [[RES]] : memref } func @test_exp(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Exp"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_exp // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: store [[EXP]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } func @test_tanh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Tanh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_tanh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32 // CHECK: [[DIVISOR:%.+]] = addf [[EXP]], [[NEXP]] : f32 // CHECK: [[TANH_RES:%.+]] = divf [[DIVIDEND]], [[DIVISOR]] : f32 // CHECK: store [[TANH_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } func @test_sinh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sinh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sinh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[TWO:%.+]] = constant {{2.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32 // CHECK: [[SINH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32 // CHECK: store [[SINH_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } func @test_cosh(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Cosh"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_cosh // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[TWO:%.+]] = constant {{2.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVIDEND:%.+]] = addf [[EXP]], [[NEXP]] : f32 // CHECK: [[COSH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32 // CHECK: store [[COSH_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } func @test_sigmoid(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Sigmoid"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_sigmoid // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[ONE:%.+]] = constant {{1.+}} : f32 // CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32 // CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32 // CHECK: [[DIVISOR:%.+]] = addf [[ONE]], [[NEXP]] : f32 // CHECK: [[SIGMOID_RES:%.+]] = divf [[ONE]], [[DIVISOR]] : f32 // CHECK: store [[SIGMOID_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref } func @test_relu(%arg0 : tensor) -> tensor<*xf32> { %0 = "onnx.Relu"(%arg0) : (tensor) -> tensor<*xf32> "std.return"(%0) : (tensor<*xf32>) -> () // CHECK-LABEL: test_relu // CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref // CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref // CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2 // CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops { // CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1 // CHECK: } : () -> (!krnl.loop, !krnl.loop) // CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref // CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) { // CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref // CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32 // CHECK: [[LTZERO:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32 // CHECK: [[RELU_RES:%.+]] = select [[LTZERO]], [[ZERO]], [[LOAD]] : f32 // CHECK: store [[RELU_RES]], [[RES]][%arg1, %arg2] : memref // CHECK: return [[RES]] : memref }