onnx-mlir/src/dialect/onnx/onnx.td

149 lines
5.6 KiB
TableGen

//===- ONNXOps.td -- ONNX operation definitions ---------*- tablegen -*----===//
//
// Copyright 2019 The IBM Research Authors
//
// =============================================================================
//
// Defines MLIR ONNX operations.
//
//===----------------------------------------------------------------------===//
#ifdef ONNX_OPS
#else
#define ONNX_OPS
#ifdef OP_BASE
#else
include "mlir/IR/OpBase.td"
#endif // OP_BASE
#ifdef SHAPE_INFERENCE_INTERFACE
#else
include "pass/shape_inference_interface.td"
#endif // SHAPE_INFERENCE_INTERFACE
def ONNX_Dialect : Dialect {
let name = "onnx";
let cppNamespace = "";
}
// Base class for ONNX dialect operations. This operation inherits from the base
// `Op` class in OpBase.td, and provides:
// * The parent dialect of the operation.
// * The mnemonic for the operation, or the name without the dialect prefix.
// * A list of traits for the operation.
class ONNX_Op<string mnemonic, list<OpTrait> traits = []> :
Op<ONNX_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// ONNX Operations
//===----------------------------------------------------------------------===//
//the tablegen code onnxop.in is generated with gen_doc.py
//clone and install onnx
// git clone --recursive https://github.com/onnx/onnx.git
// set up env for anaconda3 and for ONNF (BOOSTROOT, cmake, gcc ...)
// cd onnx
//install onnx
// CC=gcc CXX=g++ pip install -e .
//run the script
// python onnx/defs/gen_doc.py
//result is in docs/onnxop.inc
//current limitations:
// 1. Attributes are not processed
// 2. output type inference not implemented except Add
// 3. Type Attribute: 'optional' and 'Variadic hetergeneous' are ignored
// 4. type of string, complex64 and complex128 for input/output are ignored
// 5. unsigned int are treated as signed one
include "dialect/onnx/onnxop.inc"
// Indicate entry point functions of ONNX graph.
def ONNXEntryPointOp: ONNX_Op<"EntryPoint"> {
let summary = "Indicate ONNX entry point";
let description = [{
The "onnx.EntryPoint" function indicates the main entry point of ONNX model.
}];
let builders = [OpBuilder<[{Builder *builder, OperationState &state,
FuncOp function, int numInputs, int numOutputs}]>];
let extraClassDeclaration = [{
static ONNXEntryPointOp create(Location location, FuncOp& func,
int numInputs, int numOutputs);
static StringRef getEntryPointFuncAttrName() { return "func"; }
static StringRef getNumInputsAttrName() { return "numInputs"; }
static StringRef getNumOutputsAttrName() { return "numOutputs"; }
}];
}
//===----------------------------------------------------------------------===//
// ONNX Operations for handling optional arguments
//===----------------------------------------------------------------------===//
// To allow pattern matching on operations with optional arguments/outputs we
// implement variants of the original ONNX dialect operations. The ONNX
// operations automatically generated by the `gen_doc.py` script and included
// in the `onnxop.inc` file have all optional arguments and outputs present.
// In the operations below we include the variants with missing operands
// or outputs. This decision affects only ONNX operations with optional
// arguments not ONNX operations with variadic operands.
def ONNXGemmNoBiasOp: ONNX_Op<"GemmNoBias",
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
let summary = "ONNX general matrix multiply operation without bias.";
let description = [{
The "onnx.Gemm" generic matrix multiplication without bias.
}];
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$A,
AnyTypeOf<[AnyMemRef, AnyTensor]>:$B,
DefaultValuedAttr<F32Attr, "1.0">:$alpha,
DefaultValuedAttr<F32Attr, "1.0">:$beta,
DefaultValuedAttr<I64Attr, "0">:$transA,
DefaultValuedAttr<I64Attr, "0">:$transB);
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$o_Y);
}
def ONNXConvNoBiasOp:ONNX_Op<"ConvNoBias",
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
let summary = "ONNX Conv operation with no Bias operand.";
let description = [{
"The convolution operator consumes an input tensor and a filter, and"
"computes the output."
}];
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$X,
AnyTypeOf<[AnyMemRef, AnyTensor]>:$W,
DefaultValuedAttr<StrAttr, "NOTSET">:$auto_pad,
OptionalAttr<I64ArrayAttr>:$dilations,
DefaultValuedAttr<I64Attr, "1">:$group,
OptionalAttr<I64ArrayAttr>:$kernel_shape,
OptionalAttr<I64ArrayAttr>:$pads,
OptionalAttr<I64ArrayAttr>:$strides);
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$o_Y);
}
def ONNXMaxPoolSingleOutOp: ONNX_Op<"MaxPoolSingleOut",
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
let summary = "ONNX MaxPool operation with a single output.";
let description = [{
"ONNX MaxPool operation with a single output."
"See ONNXMaxPoolOp for a full description of the MaxPool semantics."
}];
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$X,
DefaultValuedAttr<StrAttr, "NOTSET">:$auto_pad,
DefaultValuedAttr<I64Attr, "0">:$ceil_mode,
OptionalAttr<I64ArrayAttr>:$dilations,
DefaultValuedAttr<I64ArrayAttr, "{}">:$kernel_shape,
OptionalAttr<I64ArrayAttr>:$pads,
DefaultValuedAttr<I64Attr, "0">:$storage_order,
OptionalAttr<I64ArrayAttr>:$strides);
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$o_Y);
}
#endif // ONNX_OPS