onnx-mlir/test/mlir/onnx/onnx_lowering_with_dealloc....

902 lines
47 KiB
MLIR

// RUN: onnf-opt --shape-inference --lower-frontend %s -split-input-file | FileCheck %s
func @test_add_add(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Add"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Add"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_add_add
/// First Add
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[ADDF]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Add
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[ADDF:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[ADDF]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_mul_mul(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Mul"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Mul"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_mul_mul
/// First Mul
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MULF:%.+]] = mulf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[MULF]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Mul
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MULF:%.+]] = mulf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[MULF]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_div_div(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Div"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Div"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_div_div
/// First Div
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[DIVF:%.+]] = divf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[DIVF]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Div
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[DIVF:%.+]] = divf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[DIVF]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_sub_sub(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Sub"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Sub"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sub_sub
/// First Sub
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[SUBF:%.+]] = subf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[SUBF]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Sub
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[SUBF:%.+]] = subf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[SUBF]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_and_and(%arg0 : tensor<10x10xi32>, %arg1 : tensor<10x10xi32>) -> tensor<*xi32> {
%0 = "onnx.And"(%arg0, %arg1) : (tensor<10x10xi32>, tensor<10x10xi32>) -> tensor<*xi32>
%1 = "onnx.And"(%0, %arg1) : (tensor<*xi32>, tensor<10x10xi32>) -> tensor<*xi32>
"std.return"(%1) : (tensor<*xi32>) -> ()
// CHECK-LABEL: test_and_and
/// First And
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[AND:%.+]] = and [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[AND]], [[RES]][%arg2, %arg3] : memref<10x10xi32>
/// Second And
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[AND:%.+]] = and [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[AND]], [[RET_RES]][%arg2, %arg3] : memref<10x10xi32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xi32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xi32>
// CHECK: return [[RET_RES]] : memref<10x10xi32>
}
func @test_or_or(%arg0 : tensor<10x10xi32>, %arg1 : tensor<10x10xi32>) -> tensor<*xi32> {
%0 = "onnx.Or"(%arg0, %arg1) : (tensor<10x10xi32>, tensor<10x10xi32>) -> tensor<*xi32>
%1 = "onnx.Or"(%0, %arg1) : (tensor<*xi32>, tensor<10x10xi32>) -> tensor<*xi32>
"std.return"(%1) : (tensor<*xi32>) -> ()
// CHECK-LABEL: test_or_or
/// First Or
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[OR:%.+]] = or [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[OR]], [[RES]][%arg2, %arg3] : memref<10x10xi32>
/// Second Or
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[OR:%.+]] = or [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[OR]], [[RET_RES]][%arg2, %arg3] : memref<10x10xi32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xi32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xi32>
// CHECK: return [[RET_RES]] : memref<10x10xi32>
}
func @test_xor_xor(%arg0 : tensor<10x10xi32>, %arg1 : tensor<10x10xi32>) -> tensor<*xi32> {
%0 = "onnx.Xor"(%arg0, %arg1) : (tensor<10x10xi32>, tensor<10x10xi32>) -> tensor<*xi32>
%1 = "onnx.Xor"(%0, %arg1) : (tensor<*xi32>, tensor<10x10xi32>) -> tensor<*xi32>
"std.return"(%1) : (tensor<*xi32>) -> ()
// CHECK-LABEL: test_xor_xor
/// First Xor
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xi32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[XOR:%.+]] = xor [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[XOR]], [[RES]][%arg2, %arg3] : memref<10x10xi32>
/// Second Xor
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xi32>
// CHECK: [[XOR:%.+]] = xor [[LOAD1]], [[LOAD2]] : i32
// CHECK: store [[XOR]], [[RET_RES]][%arg2, %arg3] : memref<10x10xi32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xi32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xi32>
// CHECK: return [[RET_RES]] : memref<10x10xi32>
}
func @test_exp_exp(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Exp"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Exp"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_exp_exp
/// First Exp
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: store [[EXP]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Exp
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: store [[EXP]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_tanh_tanh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Tanh"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Tanh"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_tanh_tanh
/// First Tanh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[TANH:%.+]] = tanh [[LOAD]] : f32
// CHECK: store [[TANH]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Tanh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[TANH_RES:%.+]] = tanh [[LOAD]] : f32
// CHECK: store [[TANH_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_sinh_sinh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Sinh"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Sinh"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sinh_sinh
/// First Sinh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[TWO:%.+]] = constant {{2.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32
// CHECK: [[SINH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32
// CHECK: store [[SINH_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Sinh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[TWO:%.+]] = constant {{2.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVIDEND:%.+]] = subf [[EXP]], [[NEXP]] : f32
// CHECK: [[SINH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32
// CHECK: store [[SINH_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_cosh_cosh(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Cosh"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Cosh"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_cosh_cosh
/// First Cosh
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[TWO:%.+]] = constant {{2.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVIDEND:%.+]] = addf [[EXP]], [[NEXP]] : f32
// CHECK: [[COSH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32
// CHECK: store [[COSH_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Cosh
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[TWO:%.+]] = constant {{2.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVIDEND:%.+]] = addf [[EXP]], [[NEXP]] : f32
// CHECK: [[COSH_RES:%.+]] = divf [[DIVIDEND]], [[TWO]] : f32
// CHECK: store [[COSH_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_sigmoid_sigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Sigmoid"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Sigmoid"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sigmoid_sigmoid
/// First Sigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVISOR:%.+]] = addf [[ONE]], [[NEXP]] : f32
// CHECK: [[SIGMOID_RES:%.+]] = divf [[ONE]], [[DIVISOR]] : f32
// CHECK: store [[SIGMOID_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Sigmoid
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[NLOAD:%.+]] = subf [[ZERO]], [[LOAD]] : f32
// CHECK: [[NEXP:%.+]] = exp [[NLOAD]] : f32
// CHECK: [[DIVISOR:%.+]] = addf [[ONE]], [[NEXP]] : f32
// CHECK: [[SIGMOID_RES:%.+]] = divf [[ONE]], [[DIVISOR]] : f32
// CHECK: store [[SIGMOID_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_relu_relu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Relu"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Relu"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_relu_relu
/// First Relu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[LTZERO:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[LTZERO]], [[ZERO]], [[LOAD]] : f32
// CHECK: store [[RELU_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Relu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[LTZERO:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[LTZERO]], [[ZERO]], [[LOAD]] : f32
// CHECK: store [[RELU_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_sum_sum(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Sum"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Sum"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_sum_sum
/// First Sum
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[ADD]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Sum
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[ADD:%.+]] = addf [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[ADD]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_max_max(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Max"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Max"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_max_max
/// First Max
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MAX:%.+]] = cmpf "ogt", [[LOAD1]], [[LOAD2]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[MAX]], [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[RELU_RES]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Max
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MAX:%.+]] = cmpf "ogt", [[LOAD1]], [[LOAD2]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[MAX]], [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[RELU_RES]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_min_min(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Min"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<*xf32>
%1 = "onnx.Min"(%0, %arg1) : (tensor<*xf32>, tensor<10x10xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_min_min
/// First Min
// CHECK: [[RET_RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[RES:%.+]] = alloc() : memref<10x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load %arg0[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MIN:%.+]] = cmpf "olt", [[LOAD1]], [[LOAD2]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[MIN]], [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[RELU_RES]], [[RES]][%arg2, %arg3] : memref<10x10xf32>
/// Second Min
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg2 = 0 to 10, [[DEF_LOOPS]]#1 -> %arg3 = 0 to 10) {
// CHECK: [[LOAD1:%.+]] = load [[RES]][%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[LOAD2:%.+]] = load %arg1[%arg2, %arg3] : memref<10x10xf32>
// CHECK: [[MIN:%.+]] = cmpf "olt", [[LOAD1]], [[LOAD2]] : f32
// CHECK: [[RELU_RES:%.+]] = select [[MIN]], [[LOAD1]], [[LOAD2]] : f32
// CHECK: store [[RELU_RES]], [[RET_RES]][%arg2, %arg3] : memref<10x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<10x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<10x10xf32>
// CHECK: return [[RET_RES]] : memref<10x10xf32>
}
func @test_elu_elu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Elu"(%arg0) {alpha=2.0:f32} : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Elu"(%0) {alpha=2.0:f32} : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_elu_elu
/// First Elu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{2.+}} : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[SUB:%.+]] = subf [[EXP]], [[ONE]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[SUB]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32
// CHECK: store [[SELECT]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Elu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{2.+}} : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[SUB:%.+]] = subf [[EXP]], [[ONE]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[SUB]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32
// CHECK: store [[SELECT]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_leakyrelu_leakyrelu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.LeakyRelu"(%arg0) {alpha=1.0:f32} : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.LeakyRelu"(%0) {alpha=1.0:f32} : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_leakyrelu_leakyrelu
/// First LeakyRelu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32
// CHECK: store [[SELECT]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second LeakyRelu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[CMP:%.+]] = cmpf "olt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[MUL]], [[LOAD]] : f32
// CHECK: store [[SELECT]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_selu_selu(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Selu"(%arg0) {alpha=1.0:f32, gamma=2.0:f32} : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Selu"(%0) {alpha=1.0:f32, gamma=2.0:f32} : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_selu_selu
/// First Selu
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[GAMMA:%.+]] = constant {{2.+}} : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[CMP:%.+]] = cmpf "ogt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[EXP]] : f32
// CHECK: [[SUB:%.+]] = subf [[MUL]], [[ALPHA]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[LOAD]], [[SUB]] : f32
// CHECK: [[SELU_RES:%.+]] = mulf [[GAMMA]], [[SELECT]] : f32
// CHECK: store [[SELU_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Selu
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[GAMMA:%.+]] = constant {{2.+}} : f32
// CHECK: [[EXP:%.+]] = exp [[LOAD]] : f32
// CHECK: [[CMP:%.+]] = cmpf "ogt", [[LOAD]], [[ZERO]] : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[EXP]] : f32
// CHECK: [[SUB:%.+]] = subf [[MUL]], [[ALPHA]] : f32
// CHECK: [[SELECT:%.+]] = select [[CMP]], [[LOAD]], [[SUB]] : f32
// CHECK: [[SELU_RES:%.+]] = mulf [[GAMMA]], [[SELECT]] : f32
// CHECK: store [[SELU_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_hardsigmoid_hardsigmoid(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.HardSigmoid"(%arg0) {alpha=1.0:f32, beta=2.0:f32} : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.HardSigmoid"(%0) {alpha=1.0:f32, beta=2.0:f32} : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_hardsigmoid_hardsigmoid
/// First HardSigmoid
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[BETA:%.+]] = constant {{2.+}} : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32
// CHECK: [[ADD:%.+]] = addf [[MUL]], [[BETA]] : f32
// CHECK: [[CMP1:%.+]] = cmpf "ogt", [[ADD]], [[ZERO]] : f32
// CHECK: [[SELECT1:%.+]] = select [[CMP1]], [[ADD]], [[ZERO]] : f32
// CHECK: [[CMP2:%.+]] = cmpf "olt", [[SELECT1]], [[ONE]] : f32
// CHECK: [[SELECT2:%.+]] = select [[CMP2]], [[SELECT1]], [[ONE]] : f32
// CHECK: store [[SELECT2]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second HardSigmoid
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ZERO:%.+]] = constant {{0.+}} : f32
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[ALPHA:%.+]] = constant {{1.+}} : f32
// CHECK: [[BETA:%.+]] = constant {{2.+}} : f32
// CHECK: [[MUL:%.+]] = mulf [[ALPHA]], [[LOAD]] : f32
// CHECK: [[ADD:%.+]] = addf [[MUL]], [[BETA]] : f32
// CHECK: [[CMP1:%.+]] = cmpf "ogt", [[ADD]], [[ZERO]] : f32
// CHECK: [[SELECT1:%.+]] = select [[CMP1]], [[ADD]], [[ZERO]] : f32
// CHECK: [[CMP2:%.+]] = cmpf "olt", [[SELECT1]], [[ONE]] : f32
// CHECK: [[SELECT2:%.+]] = select [[CMP2]], [[SELECT1]], [[ONE]] : f32
// CHECK: store [[SELECT2]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}
func @test_reciprocal_reciprocal(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = "onnx.Reciprocal"(%arg0) : (tensor<?x10xf32>) -> tensor<*xf32>
%1 = "onnx.Reciprocal"(%0) : (tensor<*xf32>) -> tensor<*xf32>
"std.return"(%1) : (tensor<*xf32>) -> ()
// CHECK-LABEL: test_reciprocal_reciprocal
/// First Reciprocal
// CHECK: [[DIM_0:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: [[RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim %arg0, 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load %arg0[%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[RECIPROCAL_RES:%.+]] = divf [[ONE]], [[LOAD]] : f32
// CHECK: store [[RECIPROCAL_RES]], [[RES]][%arg1, %arg2] : memref<?x10xf32>
/// Second Reciprocal
// CHECK: [[DIM_0:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: [[RET_RES:%.+]] = alloc([[DIM_0]]) : memref<?x10xf32>
// CHECK: [[DEF_LOOPS:%.+]]:2 = krnl.define_loops 2
// CHECK: [[OPT_LOOPS:%.+]]:2 = krnl.optimize_loops {
// CHECK: krnl.return_loops [[DEF_LOOPS]]#0, [[DEF_LOOPS]]#1
// CHECK: } : () -> (!krnl.loop, !krnl.loop)
// CHECK: [[DIM_2:%.+]] = dim [[RES]], 0 : memref<?x10xf32>
// CHECK: krnl.iterate([[OPT_LOOPS]]#0, [[OPT_LOOPS]]#1) with ([[DEF_LOOPS]]#0 -> %arg1 = 0 to [[DIM_2]], [[DEF_LOOPS]]#1 -> %arg2 = 0 to 10) {
// CHECK: [[LOAD:%.+]] = load [[RES]][%arg1, %arg2] : memref<?x10xf32>
// CHECK: [[ONE:%.+]] = constant {{1.+}} : f32
// CHECK: [[RECIPROCAL_RES:%.+]] = divf [[ONE]], [[LOAD]] : f32
// CHECK: store [[RECIPROCAL_RES]], [[RET_RES]][%arg1, %arg2] : memref<?x10xf32>
/// Dealloc of first result.
// CHECK: dealloc [[RES]] : memref<?x10xf32>
// CHECK-NOT: dealloc [[RET_RES]] : memref<?x10xf32>
// CHECK: return [[RET_RES]] : memref<?x10xf32>
}