onnx-mlir/src/builder/frontend_dialect_transforme...

764 lines
28 KiB
C++

//===- frontend_dialect_transformer.cpp - MLIR Operations -----------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file transforms the input to available MLIR dialects that can represent
// the operations of the model. Models use the ONNX dialect and any other
// extension dialects that comprise the the operations not supported or covered
// by the ONNX specification.
//
// A `frontend` placeholder dialect is used to encode operations that are not
// covered by any existing dialects.
//
//===----------------------------------------------------------------------===//
#include <numeric>
#include <regex>
#include <string>
#include <tuple>
#include <map>
#include "mlir/Analysis/Verifier.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include "src/dialect/onnx/onnx_ops.hpp"
#include "frontend_dialect_transformer.hpp"
namespace onnf {
namespace {
void replaceAll(
std::string& str, const std::string& from, const std::string& to) {
if (from.empty())
return;
size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length(); // In case 'to' contains 'from', like replacing
// 'x' with 'yx'
}
}
std::string legalize_name(std::string name) {
std::replace(name.begin(), name.end(), '/', '_');
std::replace(name.begin(), name.end(), '-', '_');
replaceAll(name, ":", "_colon_");
// If tensor name starts with a number, prepend n to make it a legal c++
// identifier.
if (name.size() > 0 && isdigit(name.at(0)))
name.insert(0, 1, 'n');
return name;
}
struct OnnxOnnfSymbolMapping {
/*!
* Get MLIR tensor by onnx tensor name.
* @param name onnx tensor name.
* @return onnf tensor corresponding to `name`.
*/
mlir::Value GetTensorByOnnxName(std::string name) {
assert(onnx_name2onnf_tensor.find(legalize_name(name)) !=
onnx_name2onnf_tensor.end() &&
"Tensor not found");
return onnx_name2onnf_tensor.at(legalize_name(name));
}
/*!
* Add a new mapping from onnx tensor name to MLIR symbol.
* @param name onnx tensor name.
* @param tensor MLIR Value pointer.
*/
void AddMapping(std::string name, mlir::Value tensor) {
assert(onnx_name2onnf_tensor.count(legalize_name(name)) == 0 &&
"Tensor already exists.");
onnx_name2onnf_tensor.emplace(legalize_name(name), tensor);
}
bool ContainKey(std::string name) {
return onnx_name2onnf_tensor.count(name) != 0;
}
private:
/*!
* mapping from onnx tensor names to MLIR tensor.
*/
std::map<std::string, mlir::Value> onnx_name2onnf_tensor;
};
class FrontendGenImpl {
public:
FrontendGenImpl(mlir::MLIRContext &context)
: context_(context), builder_(&context) {
module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context));
}
mlir::ModuleOp ImportONNXModel(onnx::ModelProto model) {
ImportGraph(model.graph());
return module_;
}
private:
mlir::MLIRContext &context_;
mlir::ModuleOp module_;
mlir::OpBuilder builder_;
// mapping between string name and symbol
OnnxOnnfSymbolMapping frontend_symbols_;
mlir::Location UnknownLoc() { return mlir::UnknownLoc::get(&context_); }
// Convert type to MLIR type.
// A complete list of types can be found in:
// <onnf-build-folder>/third_party/onnx/onnx/onnx.pb.h
mlir::Type TypeConvert(onnx::TensorProto_DataType intype) {
switch (intype) {
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT16:
return builder_.getF16Type();
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT:
return builder_.getF32Type();
case onnx::TensorProto_DataType::TensorProto_DataType_DOUBLE:
return builder_.getF64Type();
case onnx::TensorProto_DataType::TensorProto_DataType_INT8:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT8:
return builder_.getIntegerType(8);
case onnx::TensorProto_DataType::TensorProto_DataType_INT16:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT16:
return builder_.getIntegerType(16);
case onnx::TensorProto_DataType::TensorProto_DataType_INT32:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT32:
return builder_.getIntegerType(32);
case onnx::TensorProto_DataType::TensorProto_DataType_INT64:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT64:
return builder_.getIntegerType(64);
case onnx::TensorProto_DataType::TensorProto_DataType_BOOL:
return builder_.getI1Type();
case onnx::TensorProto_DataType::TensorProto_DataType_STRING:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX64:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX128:
case onnx::TensorProto_DataType::TensorProto_DataType_UNDEFINED:
assert(false && "Unsupported data type encountered.");
return nullptr;
}
}
/*!
* Import an onnx input tensor type by determining and recording its type
* in a list of input tensor mlir types.
* @param input onnx input tensor ValueInfoProto.
* @param arg_types list of mlir types representing types of graph input.
*/
void ImportInputTensorType(const onnx::ValueInfoProto &input,
llvm::SmallVector<mlir::Type, 4> &arg_types) {
std::vector<int64_t> dims;
auto shape_proto = input.type().tensor_type().shape();
auto input_tensor_legalized_name = legalize_name(input.name());
for (int i = 0; i < shape_proto.dim_size(); i++) {
if (shape_proto.dim()[i].dim_value()) {
int dim_numeric_size = shape_proto.dim()[i].dim_value();
assert(
dim_numeric_size != 0 && "Parsed an input tensor with a dimension size of zero");
if (dim_numeric_size > 0) {
dims.push_back(dim_numeric_size);
} else { // If dim_value < 0, then dim is parametric.
// TODO Verify the unknown dim size in MLIR
dims.push_back(-1);
}
} else {
// TODO How to represent variable length
dims.push_back(-1);
}
}
mlir::Type elementType =
TypeConvert(input.type().tensor_type().elem_type());
llvm::ArrayRef<int64_t> tensor_dims(dims.data(), dims.size());
arg_types.emplace_back(
mlir::RankedTensorType::get(tensor_dims, elementType));
}
/*!
* Import a input tensor symbol by recording a new entry in frontend_symbols_
* recording the mapping between legalized onnx tensor name and mlir::Value
* for further lookup in computation node importing.
* @param input onnx input tensor ValueInfoProto.
* @param symbol mlir input argument.
*/
void ImportInputTensorSymbol(const onnx::ValueInfoProto &input,
mlir::Value symbol) {
auto input_tensor_legalized_name = legalize_name(input.name());
assert(
!frontend_symbols_.ContainKey(input_tensor_legalized_name) &&
"Found duplicate legalized input tensor names.");
frontend_symbols_.AddMapping(input_tensor_legalized_name, symbol);
}
template <typename T>
T get_attr_generic(onnx::NodeProto &node, std::string name,
std::function<T(onnx::AttributeProto &)> attr_getter,
T default_val) {
for (int i = 0; i < node.attribute_size(); ++i) {
auto attr = node.attribute(i);
if (attr.name() == name) {
return attr_getter(attr);
}
}
return default_val;
}
template <typename T>
T get_attr_generic(onnx::NodeProto &node, std::string name,
std::function<T(onnx::AttributeProto &)> attr_getter) {
for (int i = 0; i < node.attribute_size(); ++i) {
auto attr = node.attribute(i);
if (attr.name() == name) {
return attr_getter(attr);
}
}
assert(false && "ONNX Node Attribute Not Found!");
}
auto get_attr_ints(onnx::NodeProto &node, std::string name,
std::vector<int> default_val) {
std::function<std::vector<int>(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) {
std::vector<int> ints(attr.ints_size());
std::copy(attr.ints().begin(), attr.ints().end(), ints.begin());
return ints;
};
auto r = get_attr_generic(node, name, attr_getter, default_val);
auto dataType =
mlir::RankedTensorType::get(r.size(), builder_.getIntegerType(32));
auto attr_v = mlir::DenseElementsAttr::get(dataType, llvm::makeArrayRef(r));
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_ints(onnx::NodeProto &node, std::string name) {
std::function<std::vector<int>(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) {
std::vector<int> ints(attr.ints_size());
std::copy(attr.ints().begin(), attr.ints().end(), ints.begin());
return ints;
};
auto r = get_attr_generic(node, name, attr_getter);
auto dataType =
mlir::RankedTensorType::get(r.size(), builder_.getIntegerType(32));
auto attr_v = mlir::DenseElementsAttr::get(dataType, llvm::makeArrayRef(r));
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_floats(onnx::NodeProto &node, std::string name) {
std::function<std::vector<float>(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) {
std::vector<float> floats(attr.floats_size());
std::copy(attr.floats().begin(), attr.floats().end(), floats.begin());
return floats;
};
auto r = get_attr_generic(node, name, attr_getter);
auto dataType =
mlir::RankedTensorType::get(r.size(), builder_.getF32Type());
auto attr_v = mlir::DenseElementsAttr::get(dataType, llvm::makeArrayRef(r));
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_floats(onnx::NodeProto &node, std::string name,
std::vector<float> default_val) {
std::function<std::vector<float>(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) {
std::vector<float> floats(attr.floats_size());
std::copy(attr.floats().begin(), attr.floats().end(), floats.begin());
return floats;
};
auto r = get_attr_generic(node, name, attr_getter, default_val);
auto dataType =
mlir::RankedTensorType::get(r.size(), builder_.getF32Type());
auto attr_v = mlir::DenseElementsAttr::get(dataType, llvm::makeArrayRef(r));
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_int(onnx::NodeProto &node, std::string name) {
std::function<int(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.i(); };
int r = get_attr_generic(node, name, attr_getter);
auto attr_v = builder_.getI32IntegerAttr(r);
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_int(onnx::NodeProto &node, std::string name, int default_val) {
std::function<int(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.i(); };
int r = get_attr_generic(node, name, attr_getter, default_val);
auto attr_v = builder_.getI32IntegerAttr(r);
auto aname = node.op_type() + "." + name;
auto attr_output = builder_.getNamedAttr(aname, attr_v);
return attr_output;
}
auto get_attr_float(onnx::NodeProto &node, std::string name) {
std::function<float(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.f(); };
auto r = get_attr_generic(node, name, attr_getter);
auto attr_v = builder_.getF32FloatAttr(r);
auto aname = node.op_type() + "." + name;
return builder_.getNamedAttr(aname, attr_v);
}
auto get_attr_float(onnx::NodeProto &node, std::string name,
float default_val) {
std::function<float(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.f(); };
auto r = get_attr_generic(node, name, attr_getter, default_val);
auto attr_v = builder_.getF32FloatAttr(r);
auto aname = node.op_type() + "." + name;
return builder_.getNamedAttr(aname, attr_v);
}
auto get_attr_string(onnx::NodeProto &node, std::string name) {
std::function<std::string(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.s(); };
auto r = get_attr_generic(node, name, attr_getter);
auto attr_v = builder_.getStringAttr(r);
auto aname = node.op_type() + "." + name;
return builder_.getNamedAttr(aname, attr_v);
}
auto get_attr_string(onnx::NodeProto &node, std::string name,
std::string default_val) {
std::function<std::string(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.s(); };
auto r = get_attr_generic(node, name, attr_getter, default_val);
auto attr_v = builder_.getStringAttr(r);
auto aname = node.op_type() + "." + name;
return builder_.getNamedAttr(aname, attr_v);
}
/*
auto get_attr_strings(onnx::NodeProto &node, std::string name) {
std::function<std::vector<std::string>(onnx::AttributeProto &)>
attr_getter =
[](onnx::AttributeProto &attr) {
std::vector<std::string> strings(attr.strings_size());
std::copy(attr.strings().begin(), attr.strings().end(),
strings.begin()); return strings;
};
auto r = get_attr_generic(node, name, attr_getter);
return r;
return builder_.getNamedAttr(aname, attr_v);
auto dataType =
mlir::RankedTensorType::get(r.size(), builder_.get???Type());
auto attr_v = mlir::DenseElementsAttr::get(dataType,
llvm::makeArrayRef(r)); auto aname = node.op_type() + "." + name; auto
attr_output = builder_.getNamedAttr(aname, attr_v); return attr_output;
}
*/
auto get_default_ints(std::string default_str) {
std::vector<int> r;
auto start = default_str.find("{");
while (true) {
auto end = default_str.find(",", start + 1);
if (end == std::string::npos) {
end = default_str.find("}", start + 1);
if (end != std::string::npos && end > start + 1) {
r.push_back(std::stoi(default_str.substr(start + 1, end)));
}
break;
} else {
r.push_back(std::stoi(default_str.substr(start + 1, end)));
}
start = end + 1;
}
return r;
}
auto get_default_floats(std::string default_str) {
std::vector<float> r;
auto start = default_str.find("{");
while (true) {
auto end = default_str.find(",", start + 1);
if (end == std::string::npos) {
end = default_str.find("}", start + 1);
if (end != std::string::npos && end > start + 1) {
r.push_back(std::stof(default_str.substr(start + 1, end)));
}
break;
} else {
r.push_back(std::stof(default_str.substr(start + 1, end)));
}
start = end + 1;
}
return r;
}
auto get_default_strings(std::string default_str) {
std::vector<std::string> r;
auto start = default_str.find("{");
while (true) {
auto end = default_str.find(",", start + 1);
if (end == std::string::npos) {
end = default_str.find("}", start + 1);
if (end != std::string::npos && end > start + 1) {
r.push_back(default_str.substr(start + 1, end));
}
break;
} else {
r.push_back(default_str.substr(start + 1, end));
}
start = end + 1;
}
return r;
}
onnx::TensorProto get_attr_tensor(onnx::NodeProto &node, std::string name) {
std::function<onnx::TensorProto(onnx::AttributeProto &)> attr_getter =
[](onnx::AttributeProto &attr) { return attr.t(); };
return get_attr_generic(node, name, attr_getter);
}
auto ImportNodeAttr(onnx::NodeProto node, std::string attr_name,
std::string type_name, std::string default_str) {
if (default_str == "") {
if (type_name == "int") {
return get_attr_int(node, attr_name);
} else if (type_name == "float") {
return get_attr_float(node, attr_name);
} else if (type_name == "str") {
return get_attr_string(node, attr_name);
} else if (type_name == "ints") {
return get_attr_ints(node, attr_name);
} else if (type_name == "floats") {
return get_attr_floats(node, attr_name);
} else {
assert(
false &&
"Got an empty initializer or initializer for this "
"datatype is not implemented. Something is wrong.");
}
} else {
// with default value
if (type_name == "int") {
return get_attr_int(node, attr_name, std::stoi(default_str));
} else if (type_name == "float") {
return get_attr_float(node, attr_name, std::stof(default_str));
} else if (type_name == "str") {
return get_attr_string(node, attr_name, default_str);
} else if (type_name == "ints") {
return get_attr_ints(node, attr_name, get_default_ints(default_str));
} else if (type_name == "floats") {
return get_attr_floats(node, attr_name,
get_default_floats(default_str));
} else {
assert(
false &&
"Got an empty initializer or initializer for this "
"datatype is not implemented. Something is wrong.");
}
}
}
void ImportNodeGeneric(onnx::NodeProto node) {
std::vector<mlir::Value> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
mlir::OperationState result(UnknownLoc(), "frontend." + node.op_type());
for (auto item : node.output()) {
result.addTypes(mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
result.addOperands(inputs);
auto op = builder_.createOperation(result);
for (int i = 0; i < node.output().size(); i++) {
auto r = op->getResult(i);
frontend_symbols_.AddMapping(legalize_name(node.output()[i]), r);
}
}
// if c++17 is used, ImportNodeOneOut and ImportNodeMultipleOuts can be
// combined with 'if constexpr' the issue is the type of the output is
// different. alternative way to use variadic output for all the op
/*!
* Important onnx node which generates only one output
* @param node onnx node
* @param nIn number of expected inputs
* @param nOut number of expected outputs
* @param attrs list of desription for attributes with format {name, type,
* default}
*/
template <typename T>
void ImportNodeOneOut(
onnx::NodeProto node, int nIn, int nOut,
std::initializer_list<std::tuple<std::string, std::string, std::string>>
attrs) {
std::vector<mlir::Value> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
std::vector<mlir::Type> outputTypes;
for (auto item : node.output()) {
outputTypes.push_back(
mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
std::vector<mlir::NamedAttribute> attributes;
// for (auto [attr_name, attr_type, attr_default] : attrs) {
for (auto oneAttr : attrs) {
std::string attr_name;
std::string attr_type;
std::string attr_default;
std::tie(attr_name, attr_type, attr_default) = oneAttr;
if (attr_type != "") {
auto attr = ImportNodeAttr(node, attr_name, attr_type, attr_default);
attributes.push_back(attr);
} else {
// TODO: the attributes need special handling
// std::cout << "missing " << node.op_type() << " " << attr_name <<
// std::endl;
}
}
llvm::StringRef OpName = node.op_type();
if (nIn == inputs.size() && nOut == outputTypes.size()) {
auto op =
builder_.create<T>(UnknownLoc(), outputTypes, inputs, attributes);
frontend_symbols_.AddMapping(legalize_name(node.output()[0]),
op.getResult());
} else {
ImportNodeGeneric(node);
}
}
template <typename T>
void ImportNodeMultipleOuts(
onnx::NodeProto node, int nIn, int nOut,
std::initializer_list<std::tuple<std::string, std::string, std::string>>
attrs) {
std::vector<mlir::Value> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
std::vector<mlir::Type> outputTypes;
for (auto item : node.output()) {
outputTypes.push_back(
mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
std::vector<mlir::NamedAttribute> attributes;
for (auto oneAttr : attrs) {
std::string attr_name;
std::string attr_type;
std::string attr_default;
std::tie(attr_name, attr_type, attr_default) = oneAttr;
if (attr_type != "") {
auto attr = ImportNodeAttr(node, attr_name, attr_type, attr_default);
attributes.push_back(attr);
} else {
// TODO: the attributes need special handling
// std::cout << "missing " << node.op_type() << " " << attr_name <<
// std::endl;
}
}
llvm::StringRef OpName = node.op_type();
if (nIn == inputs.size() && nOut == outputTypes.size()) {
auto op =
builder_.create<T>(UnknownLoc(), outputTypes, inputs, attributes);
for (int i = 0; i < node.output().size(); i++) {
frontend_symbols_.AddMapping(legalize_name(node.output()[i]),
op.getResult(i));
}
} else {
ImportNodeGeneric(node);
}
}
/*!
* Special handle for Conv operations.
* c++ does not allow template specialization inside a class scope
* a specialized function is used
*/
void ImportNodeConv(
onnx::NodeProto node, int nIn, int nOut,
std::initializer_list<std::tuple<std::string, std::string, std::string>>
attrs) {
// Conv has attribute dilations, kernel_shape, pads, the default value of
// which is determined by the shape of first argument. However, since the
// shape is unknown now, these attributes can be not generated auto
// dilations_attr = get_attr_ints(node, "dilations",
// std::vector<int>(inputs[0]->getType().cast<RankedTensorType>.getDims()-2,
// 1));
// attributes.push_back(dilations_attr)
// similar situation for pads, strides in AveragePool
// axes of ReduceSum, pads, strides, dilations and kernel_shape of MaxPool
// TODO: fix this after type inference
if (node.input().size() == 1) {
ImportNodeOneOut<mlir::ONNXConv1Op>(node, nIn, nOut, attrs);
} else {
ImportNodeOneOut<mlir::ONNXConv3Op>(node, nIn, nOut, attrs);
}
}
void ImportNode(onnx::NodeProto node) {
std::vector<mlir::Value> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
std::vector<mlir::Type> outputTypes;
for (auto item : node.output()) {
outputTypes.push_back(
mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
std::vector<mlir::NamedAttribute> attributes;
llvm::StringRef OpName = node.op_type();
// the following code is generated by gen_doc.py
// refer to dialect/onnx/onnx.td for details
// when the input or output of then op does not match the specification,
// the generic operator is used
// one known reeason is the optional input
#include "src/builder/op_build_table.inc"
}
/*!
* Import output tensor, by doing the following:
* - Add the type of this output tensor to a list of tensor
* types representing return types of this graph function.
* - Add this output tensor to the list of mlir::Value
* to be returned by the function representing computation graph.
* @param output onnx output tensor ValueInfoProto.
* @param ret_types a vector of tensor types representing graph's
* output tensor types.
* @param ret_vals a vector of mlir Value representing graph's
* output tensor.
*/
void ImportOutputTensor(const onnx::ValueInfoProto &output,
llvm::SmallVectorImpl<mlir::Type> &ret_types,
llvm::SmallVectorImpl<mlir::Value> &ret_vals) {
auto output_tensor_legalized_name = legalize_name(output.name());
assert(
frontend_symbols_.ContainKey(output_tensor_legalized_name) &&
"Output tensor not found");
auto tensor_val =
frontend_symbols_.GetTensorByOnnxName(output_tensor_legalized_name);
ret_types.emplace_back(tensor_val.getType());
ret_vals.push_back(tensor_val);
}
void ImportGraph(const onnx::GraphProto &graph,
const std::string &name = "main_graph") {
// create a function for the graph
// TODO:
// * get name and type for the function.
// * maintain a list of the defined graph
llvm::SmallVector<mlir::Type, 4> arg_types;
// Import the input tensor types.
for (const auto &input : graph.input()) {
ImportInputTensorType(input, arg_types);
}
// TODO: import the initializer
auto funcType = builder_.getFunctionType(arg_types, {});
auto mainFunc =
mlir::FuncOp::create(UnknownLoc(), name, funcType, /* attrs = */ {});
auto entryPoint = mlir::ONNXEntryPointOp::create(
UnknownLoc(), mainFunc, /*numInputs=*/graph.input().size(),
/*numOutputs=*/graph.output().size());
auto &entryBlock = *mainFunc.addEntryBlock();
builder_.setInsertionPointToStart(&entryBlock);
module_.push_back(mainFunc);
module_.push_back(entryPoint);
for (auto it : llvm::zip(graph.input(), entryBlock.getArguments())) {
ImportInputTensorSymbol(std::get<0>(it), std::get<1>(it));
}
// import nodes in the graph
auto node = graph.node();
for (const auto &item : node) {
ImportNode(item);
}
llvm::SmallVector<mlir::Type, 4> ret_types;
llvm::SmallVector<mlir::Value, 4> ret_vals;
// Import the output tensors
for (const auto &output : graph.output()) {
ImportOutputTensor(output, ret_types, ret_vals);
}
// Create a return operation to return all ONNX output tensors.
builder_.create<mlir::ReturnOp>(UnknownLoc(), ret_vals);
// Update main function signature to reflect types of newly imported
// output tensors.
funcType = builder_.getFunctionType(arg_types, ret_types);
mainFunc.setType(funcType);
}
}; // FrontendGenImpl class
} // namespace
} // namespace onnf
namespace onnf {
mlir::OwningModuleRef ImportFrontendModel(onnx::ModelProto model) {
mlir::MLIRContext context;
FrontendGenImpl myONNXGen(context);
auto module = myONNXGen.ImportONNXModel(model);
return module;
}
void ImportFrontendModelFile(std::string model_fname,
mlir::MLIRContext &context,
mlir::OwningModuleRef &module) {
onnx::ModelProto model;
std::fstream input(model_fname, std::ios::in | std::ios::binary);
auto parse_success = model.ParseFromIstream(&input);
assert(parse_success && "Onnx Model Parsing Failed.");
FrontendGenImpl myONNXGen(context);
module = myONNXGen.ImportONNXModel(model);
}
} // namespace onnf