onnx-mlir/include/OnnxMlirRuntime.h

117 lines
3.8 KiB
C++

//===------- OnnxMlirRuntime.h - ONNX-MLIR Runtime API Declarations -------===//
//
// Copyright 2019-2020 The IBM Research Authors.
//
// =============================================================================
//
// This file contains declaration of external OMTensor data structures and
// helper functions.
//
//===----------------------------------------------------------------------===//
#ifndef ONNX_MLIR_ONNXMLIRRUNTIME_H
#define ONNX_MLIR_ONNXMLIRRUNTIME_H
#ifdef __cplusplus
#include <cstdint>
#else
#include <stdbool.h>
#include <stdint.h>
#endif
#include <onnx-mlir/Runtime/OMTensor.h>
#include <onnx-mlir/Runtime/OMTensorList.h>
/*! \mainpage ONNX-MLIR Runtime API documentation
*
* \section intro_sec Introduction
*
* ONNX-MLIR project comes with an executable `onnx-mlir` capable
* of compiling onnx models to a shared library. In this documentation, we
* demonstrate how to interact programmatically with the compiled
* shared library using ONNX-MLIR's Runtime API.
*
* \section c-runtime-api C Runtime API
*
* \subsection data-structures Data Structures
*
* `OMTensor` is the data structure used to describe the runtime information
* (rank, shape, data type, etc) associated with a tensor input or output.
*
* `OMTensorList` is the data structure used to hold a list of pointers to
* OMTensor so that they can be passed into and out of the compiled model as
* inputs and outputs.
*
* \subsection model-entry-point-signature Model Entry Point Signature
*
* All compiled model will have the same exact C function signature equivalent
* to:
*
* ```c
* OMTensorList* run_main_graph(OMTensorList*);
* ```
*
* Intuitively, the model takes a list of tensors as input and returns a list of
* ensors as output.
*
* \subsection invoke-models-using-c-runtime-api Invoke Models Using C Runtime
* API
*
* We demonstrate using the API functions to run a simple ONNX model consisting
* of an add operation. To create such an onnx model, use this
* <a href="gen_add_onnx.py" target="_blank"><b>python script</b></a>
*
* To compile the above model, run `onnx-mlir add.onnx` and a binary library
* "add.so" should appear. We can use the following C code to call into the
* compiled function computing the sum of two inputs:
*
* ```c
* #include <OnnxMlirRuntime.h>
* #include <stdio.h>
*
* OMTensorList *run_main_graph(OMTensorList *);
*
* int main() {
* // Shared shape & rank.
* int64_t shape[] = {2, 2};
* int64_t rank = 2;
* // Construct x1 omt filled with 1.
* float x1Data[] = {1., 1., 1., 1., 1., 1.};
* int64_t *x1Shape = {2, 2};
* OMTensor *x1 = omTensorCreate(x1Data, shape, rank, ONNX_TYPE_FLOAT);
* // Construct x2 omt filled with 2.
* float x2Data[] = {2., 2., 2., 2., 2., 2.};
* int64_t *x2Shape = {2, 2};
* OMTensor *x2 = omTensorCreate(x2Data, shape, rank, ONNX_TYPE_FLOAT);
* // Construct a list of omts as input.
* OMTensor *list[2] = {x1, x2};
* OMTensorList *input = omTensorListCreate(list, 2);
* // Call the compiled onnx model function.
* OMTensorList *outputList = run_main_graph(input);
* // Get the first omt as output.
* OMTensor *y = omTensorListGetOmtByIndex(outputList, 0);
* float *outputPtr = (float *)omTensorGetDataPtr(y);
* // Print its content, should be all 3.
* for (int i = 0; i < 6; i++)
* printf("%f ", outputPtr[i]);
* return 0;
* }
* ```
*
* Compile with `gcc main.c add.so -o add`, you should see an executable `add`
* appearing. Run it, and the output should be:
*
* ```
* 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
* ```
* Exactly as it should be.
*
* \subsection reference Reference
*
* For full reference to available C Runtime API, refer to
*`include/onnx-mlir/Runtime/OMTensor.h` and
* `include/onnx-mlir/Runtime/OMTensorList.h`.
*
*/
#endif // ONNX_MLIR_ONNXMLIRRUNTIME_H