onnx-mlir/src/builder/frontend_dialect_transforme...

258 lines
8.0 KiB
C++

//===- frontend_dialect_transformer.cpp - MLIR Operations -----------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file transforms the input to available MLIR dialects that can represent
// the operations of the model. Models use the ONNX dialect and any other
// extension dialects that comprise the the operations not supported or covered
// by the ONNX specification.
//
// A `frontend` placeholder dialect is used to encode operations that are not
// covered by any existing dialects.
//
//===----------------------------------------------------------------------===//
#include <numeric>
#include <regex>
#include <string>
#include <tuple>
#include "mlir/Analysis/Verifier.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include "frontend_dialect_transformer.hpp"
#include "src/compiler/dialect/onnx/onnx_ops.hpp"
namespace onnf {
namespace {
void replaceAll(
std::string& str, const std::string& from, const std::string& to) {
if (from.empty())
return;
size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length(); // In case 'to' contains 'from', like replacing
// 'x' with 'yx'
}
}
std::string legalize_name(std::string name) {
std::replace(name.begin(), name.end(), '/', '_');
std::replace(name.begin(), name.end(), '-', '_');
replaceAll(name, ":", "_colon_");
// If tensor name starts with a number, prepend n to make it a legal c++
// identifier.
if (name.size() > 0 && isdigit(name.at(0)))
name.insert(0, 1, 'n');
return name;
}
struct OnnxOnnfSymbolMapping {
/*!
* Get MLIR tensor by onnx tensor name.
* @param name onnx tensor name.
* @return onnf tensor corresponding to `name`.
*/
mlir::Value* GetTensorByOnnxName(std::string name) {
return onnx_name2onnf_tensor.at(legalize_name(name));
}
/*!
* Add a new mapping from onnx tensor name to MLIR symbol.
* @param name onnx tensor name.
* @param tensor MLIR Value* pointer.
*/
void AddMapping(std::string name, mlir::Value* tensor) {
onnx_name2onnf_tensor.emplace(legalize_name(name), tensor);
}
bool ContainKey(std::string name) {
return onnx_name2onnf_tensor.count(name) != 0;
}
private:
/*!
* mapping from onnx tensor names to MLIR tensor.
*/
std::map<std::string, mlir::Value*> onnx_name2onnf_tensor;
};
class FrontendGenImpl {
public:
FrontendGenImpl(mlir::MLIRContext& context)
: context_(context), builder_(&context) {
module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context));
}
mlir::ModuleOp ImportONNXModel(onnx::ModelProto model) {
ImportGraph(model.graph());
return module_;
}
private:
mlir::MLIRContext& context_;
mlir::ModuleOp module_;
mlir::OpBuilder builder_;
// mapping between string name and symbol
OnnxOnnfSymbolMapping frontend_symbols_;
mlir::Location UnknownLoc() { return mlir::UnknownLoc::get(&context_); }
mlir::Type TypeConvert(onnx::TensorProto_DataType intype) {
return builder_.getF32Type();
}
void ImportInputTensor(onnx::ValueInfoProto& input) {
std::vector<int64_t> dims;
auto shape_proto = input.type().tensor_type().shape();
auto input_tensor_legalized_name = legalize_name(input.name());
for (int i = 0; i < shape_proto.dim_size(); i++) {
if (shape_proto.dim()[i].dim_value()) {
int dim_numeric_size = shape_proto.dim()[i].dim_value();
if (dim_numeric_size > 0) {
dims.push_back(dim_numeric_size);
} else { // If dim_value < 0, then dim is parametric.
// TODO Verify the unknown dim size in MLIR
dims.push_back(-1);
}
} else {
// TODO How to represent variable length
dims.push_back(-1);
}
}
if (!frontend_symbols_.ContainKey(input_tensor_legalized_name)) {
mlir::Type elementType =
TypeConvert(input.type().tensor_type().elem_type());
llvm::ArrayRef<int64_t> llvmdimsAR(dims.data(), dims.size());
auto dataType = mlir::RankedTensorType::get(llvmdimsAR, elementType);
mlir::OperationState result(
UnknownLoc(), "frontend.input " + input_tensor_legalized_name);
result.addTypes(dataType);
auto op = builder_.createOperation(result);
auto value = op->getResult(0);
frontend_symbols_.AddMapping(input_tensor_legalized_name, value);
} else {
// TODO Should not happen
}
}
void ImportNode(onnx::NodeProto node) {
std::vector<mlir::Value*> inputs;
for (auto item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
// Handle ONNX Add Operation by using its representation in the
// ONNX Dialect.
llvm::StringRef OpName = node.op_type();
if (OpName == "Add") {
auto op =
builder_.create<mlir::ONNXAddOp>(UnknownLoc(), inputs[0], inputs[1]);
frontend_symbols_.AddMapping(legalize_name(node.output()[0]), op.getResult());
return;
}
// Old way of doing things.
mlir::OperationState result(UnknownLoc(), "frontend." + node.op_type());
for (auto item : node.output()) {
result.addTypes(mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
result.addOperands(inputs);
auto op = builder_.createOperation(result);
for (int i = 0; i < node.output().size(); i++) {
auto r = op->getResult(i);
frontend_symbols_.AddMapping(legalize_name(node.output()[i]), r);
}
// TODO more info from node: attributes
}
void ImportOutputTensor(onnx::ValueInfoProto& output) {
if (frontend_symbols_.ContainKey(legalize_name(output.name()))) {
mlir::OperationState result(UnknownLoc(), "frontend.output " + output.name());
result.addTypes(mlir::UnrankedTensorType::get(builder_.getF32Type()));
result.addOperands(frontend_symbols_.GetTensorByOnnxName(output.name()));
builder_.createOperation(result);
} else {
// TODO: Why not in the symbol table? something is wrong
}
}
void ImportGraph(onnx::GraphProto graph) {
// create a function for the graph
// TODO:
// * get name and type for the function.
// * maintain a list of the defined graph
llvm::SmallVector<mlir::Type, 4> ret_types;
llvm::SmallVector<mlir::Type, 4> arg_types;
auto func_type = builder_.getFunctionType(arg_types, ret_types);
auto llvmfunction = mlir::FuncOp::create(
UnknownLoc(), graph.name(), func_type, /* attrs = */ {});
auto& entryBlock = *llvmfunction.addEntryBlock();
builder_.setInsertionPointToStart(&entryBlock);
module_.push_back(llvmfunction);
// TODO: import the initializer
//
// import the input tensors
for (auto input : graph.input()) {
ImportInputTensor(input);
}
// import nodes in the graph
auto node = graph.node();
for (auto item : node) {
ImportNode(item);
}
// import the output tensors
for (auto output : graph.output()) {
ImportOutputTensor(output);
}
}
}; // FrontendGenImpl class
} // namespace
} // namespace onnf
namespace onnf {
mlir::OwningModuleRef ImportFrontendModel(onnx::ModelProto model) {
mlir::MLIRContext context;
FrontendGenImpl myONNXGen(context);
auto module = myONNXGen.ImportONNXModel(model);
module.dump();
return module;
}
mlir::OwningModuleRef ImportFrontendModelFile(std::string model_fname) {
onnx::ModelProto model;
std::fstream input(model_fname, std::ios::in | std::ios::binary);
auto parse_success = model.ParseFromIstream(&input);
return ImportFrontendModel(model);
}
} // namespace onnf