onnx-mlir/test/numerical/TestConv.cpp

163 lines
5.9 KiB
C++

#include <algorithm>
#include <cmath>
#include <iostream>
#include <random>
#include <rapidcheck.h>
#include <string>
#include <vector>
#include "mlir/IR/Module.h"
#include "llvm/Support/FileSystem.h"
#include "src/Dialect/ONNX/ONNXOps.hpp"
#include "src/MainUtils.hpp"
#include "src/Runtime/ExecusionSession.hpp"
#define SHARED_LIB_BASE string("./TestConv_main_graph")
using namespace std;
// Returns whether onnx-mlir compiled convolution is producing the same results
// as a naive implementation of convolution for a specific set of convolution
// parameters/configuration.
bool isOMConvTheSameAsNaiveImplFor(const int N, const int C, const int H,
const int W, const int kH, const int kW, const int pHBegin, const int pHEnd,
const int pWBegin, const int pWEnd) {
registerDialects();
MLIRContext ctx;
auto module = ModuleOp::create(UnknownLoc::get(&ctx));
OpBuilder builder(&ctx);
llvm::SmallVector<int64_t, 4> xShape = {N, C, H, W};
llvm::SmallVector<int64_t, 1> bShape = {C};
llvm::SmallVector<int64_t, 4> wShape = {C, C, kH, kW};
auto xType = RankedTensorType::get(xShape, builder.getF32Type());
auto wType = RankedTensorType::get(wShape, builder.getF32Type());
auto yType = UnrankedTensorType::get(builder.getF32Type());
llvm::SmallVector<Type, 2> inputsType{xType, wType};
llvm::SmallVector<Type, 1> outputsType{yType};
auto funcType = builder.getFunctionType(inputsType, outputsType);
string funcName = "main_graph";
llvm::SmallVector<NamedAttribute, 1> attrs;
auto funcOp =
builder.create<FuncOp>(UnknownLoc::get(&ctx), funcName, funcType, attrs);
auto entryBlock = funcOp.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
auto xVal = entryBlock->getArgument(0);
auto wVal = entryBlock->getArgument(1);
auto bVal =
builder.create<ConstantOp>(UnknownLoc::get(&ctx), builder.getUnitAttr())
.getResult();
auto dilations = builder.getI64ArrayAttr({1, 1});
auto kernel_shape = builder.getI64ArrayAttr({kH, kW});
auto pads = builder.getI64ArrayAttr({pHBegin, pWBegin, pHEnd, pWEnd});
auto strides = builder.getI64ArrayAttr({1, 1});
auto convOp = builder.create<ONNXConvOp>(UnknownLoc::get(&ctx),
/*Y=*/yType,
/*X=*/xVal, /*W=*/wVal, /*B=*/bVal,
/*auto_pad=*/builder.getStringAttr("NOTSET"),
/*dilations=*/dilations, /*group=*/builder.getI64IntegerAttr(1),
/*kernel_shape=*/kernel_shape, /*pads=*/pads,
/*strides=*/strides);
// Use the convOp shape inference method to compute output shape, and unset
// the shape so that we don't leave IR in a inconsistent state.
convOp.inferShapes();
auto outputShape = convOp.getResult().getType().cast<ShapedType>().getShape();
auto NOut = outputShape[0];
auto COut = outputShape[1];
auto HOut = outputShape[2];
auto WOut = outputShape[3];
convOp.getResult().setType(yType);
llvm::SmallVector<Value, 1> results = {convOp.getResult()};
builder.create<ReturnOp>(UnknownLoc::get(&ctx), results);
module.push_back(funcOp);
// Emit the entry point operation which specifies the number of user
// inputs and outputs.
auto entryPoint = ONNXEntryPointOp::create(UnknownLoc::get(&ctx), funcOp,
/*numInputs=*/2,
/*numOutputs=*/1);
module.push_back(entryPoint);
OwningModuleRef moduleRef(module);
compileModule(moduleRef, ctx, SHARED_LIB_BASE, EmitLib);
onnx_mlir::ExecutionSession sess(
SHARED_LIB_BASE + ".so", "_dyn_entry_point_main_graph");
std::vector<unique_ptr<RtMemRef>> inputs;
auto xRmr = unique_ptr<RtMemRef>(getRndRealRmr<float>({N, C, H, W}));
inputs.emplace_back(move(xRmr));
auto wRmr = unique_ptr<RtMemRef>(getRndRealRmr<float>({C, C, kH, kW}));
inputs.emplace_back(move(wRmr));
auto ref = RtMemRef::create<float>({NOut, COut, HOut, WOut});
auto &img = inputs.at(0);
auto &filter = inputs.at(1);
for (int64_t n = 0; n < NOut; n++)
for (int64_t c = 0; c < COut; c++)
for (int64_t h = 0; h < HOut; h++)
for (int64_t w = 0; w < WOut; w++) {
ref->elem<float>({n, c, h, w}) = 0;
for (int64_t ci = 0; ci < C; ci++)
for (int64_t kh = 0; kh < kH; kh++)
for (int64_t kw = 0; kw < kW; kw++)
if ((h + kh - pHBegin >= 0 && h + kh - pHBegin < H) &&
(w + kw - pWBegin >= 0 && w + kw - pWBegin < W))
ref->elem<float>({n, c, h, w}) +=
img->elem<float>(
{n, ci, h + kh - pHBegin, w + kw - pWBegin}) *
filter->elem<float>({c, ci, kh, kw});
}
auto outputs = sess.run(move(inputs));
auto &conv = outputs.at(0);
return isRmrClose<float>(conv.get(), ref);
}
int main(int argc, char *argv[]) {
setExecPath(argv[0], (void *)main);
llvm::FileRemover remover(SHARED_LIB_BASE + ".so");
// RapidCheck test case generation.
rc::check("convolution implementation correctness", []() {
const auto N = *rc::gen::inRange(1, 10);
const auto C = *rc::gen::inRange(1, 20);
const auto H = *rc::gen::inRange(5, 20);
const auto W = *rc::gen::inRange(5, 20);
const auto kH = *rc::gen::inRange(1, 15);
const auto kW = *rc::gen::inRange(1, 15);
// We don't want an entire window of padding.
const auto pHBegin = *rc::gen::inRange(0, kH - 1);
const auto pHEnd = *rc::gen::inRange(0, kH - 1);
const auto pWBegin = *rc::gen::inRange(0, kW - 1);
const auto pWEnd = *rc::gen::inRange(0, kW - 1);
// Make sure we have at least 1 output per dimension.
RC_PRE((H >= kH) && (W > kW));
RC_ASSERT(isOMConvTheSameAsNaiveImplFor(
N, C, H, W, kH, kW, pHBegin, pHEnd, pWBegin, pWEnd));
});
// Exhaustive test case generation.
for (int pHBegin = 0; pHBegin < 3; pHBegin++)
for (int pHEnd = 0; pHEnd < 3; pHEnd++)
for (int pWBegin = 0; pWBegin < 3; pWBegin++)
for (int pWEnd = 0; pWEnd < 3; pWEnd++)
assert(isOMConvTheSameAsNaiveImplFor(
2, 4, 5, 5, 3, 3, pHBegin, pHEnd, pWBegin, pWEnd));
return 0;
}