| * Move to more recent LLVM commit ID * Update LLVM cache version from V9 to V10 * Update to latest LLVM commit id from master, roll back conditions in util scripts * Update circlci LLVM cache tag to ensure ci updates builds with latest LLVM commit id * Update README.md to have matching LLVM commit id * Update doc/Dialtects/onnx.md | ||
|---|---|---|
| .buildbot | ||
| .circleci | ||
| doc | ||
| src | ||
| test | ||
| third_party | ||
| utils | ||
| .clang-format | ||
| .gitignore | ||
| .gitmodules | ||
| CMakeLists.txt | ||
| LICENSE | ||
| MLIR.cmake | ||
| README.md | ||
| SharingWork.md | ||
		
			
				
				README.md
			
		
		
			
			
		
	
	ONNX MLIR
The Open Neural Network Exchange implementation in MLIR.
Prerequisites
gcc >= 6.4
libprotoc >= 3.11.0
cmake >= 3.15.4
Installation
Firstly, install MLIR (as a part of LLVM-Project):
git clone https://github.com/llvm/llvm-project.git
# Check out a specific branch that is known to work with ONNX MLIR.
cd llvm-project && git checkout 07e462526d0cbae40b320e1a4307ce11e197fb0a && cd ..
mkdir llvm-project/build
cd llvm-project/build
cmake -G Ninja ../llvm \
   -DLLVM_ENABLE_PROJECTS=mlir \
   -DLLVM_BUILD_EXAMPLES=ON \
   -DLLVM_TARGETS_TO_BUILD="host" \
   -DCMAKE_BUILD_TYPE=Release \
   -DLLVM_ENABLE_ASSERTIONS=ON \
   -DLLVM_ENABLE_RTTI=ON
cmake --build . --target -- ${MAKEFLAGS}
cmake --build . --target check-mlir
Two environment variables need to be set:
- LLVM_PROJ_SRC should point to the llvm-project src directory (e.g., llvm-project/).
- LLVM_PROJ_BUILD should point to the llvm-project build directory (e.g., llvm-project/build).
To build ONNX-MLIR, use the following command:
git clone --recursive git@github.com:onnx/onnx-mlir.git
# Export environment variables pointing to LLVM-Projects.
export LLVM_PROJ_SRC=$(pwd)/llvm-project/
export LLVM_PROJ_BUILD=$(pwd)/llvm-project/build
mkdir onnx-mlir/build && cd onnx-mlir/build
cmake ..
cmake --build . --target onnx-mlir
# Run FileCheck tests:
export LIT_OPTS=-v
cmake --build . --target check-onnx-lit
After the above commands succeed, an onnx-mlir executable should appear in the bin directory.
Using ONNX MLIR
The usage of onnx-mlir is as such:
OVERVIEW: ONNX MLIR modular optimizer driver
USAGE: onnx-mlir [options] <input file>
OPTIONS:
Generic Options:
  --help        - Display available options (--help-hidden for more)
  --help-list   - Display list of available options (--help-list-hidden for more)
  --version     - Display the version of this program
ONNX MLIR Options:
These are frontend options.
  Choose target to emit:
      --EmitONNXIR - Ingest ONNX and emit corresponding ONNX dialect.
      --EmitMLIR   - Lower model to MLIR built-in transformation dialect.
      --EmitLLVMIR - Lower model to LLVM IR (LLVM dialect).
      --EmitLLVMBC - Lower model to LLVM IR and emit (to file) LLVM bitcode for model.
Example
For example, to lower an ONNX model (e.g., add.onnx) to ONNX dialect, use the following command:
./onnx-mlir --EmitONNXIR add.onnx
The output should look like:
module {
  func @main_graph(%arg0: tensor<10x10x10xf32>, %arg1: tensor<10x10x10xf32>) -> tensor<10x10x10xf32> {
    %0 = "onnx.Add"(%arg0, %arg1) : (tensor<10x10x10xf32>, tensor<10x10x10xf32>) -> tensor<10x10x10xf32>
    return %0 : tensor<10x10x10xf32>
  }
}
Troubleshooting
If the latest LLVM project fails to work due to the latest changes to the MLIR subproject please consider using a slightly older version of LLVM. One such version, which we use, can be found here.