Merge branch 'master' into compressed

This commit is contained in:
Clifford Wolf 2016-04-05 11:59:42 +02:00
commit 7909b2a7d9
3 changed files with 161 additions and 67 deletions

View File

@ -27,24 +27,20 @@ check.smt2: picorv32.v
test_sp: testbench_sp.exe firmware/firmware.hex
vvp -N testbench_sp.exe
test_axi: testbench_axi.exe firmware/firmware.hex
vvp -N testbench_axi.exe
test_axi: testbench.exe firmware/firmware.hex
vvp -N testbench.exe +axi_test
test_synth: testbench_synth.exe firmware/firmware.hex
vvp -N testbench_synth.exe
testbench.exe: testbench.v picorv32.v
iverilog -o testbench.exe $(subst $(COMPRESSED_ISA),C,-DCOMPRESSED_ISA) testbench.v picorv32.v
iverilog -o testbench.exe $(subst C,-DCOMPRESSED_ISA,$(COMPRESSED_ISA)) testbench.v picorv32.v
chmod -x testbench.exe
testbench_sp.exe: testbench.v picorv32.v
iverilog -o testbench_sp.exe $(subst $(COMPRESSED_ISA),C,-DCOMPRESSED_ISA) -DSP_TEST testbench.v picorv32.v
iverilog -o testbench_sp.exe $(subst C,-DCOMPRESSED_ISA,$(COMPRESSED_ISA)) -DSP_TEST testbench.v picorv32.v
chmod -x testbench_sp.exe
testbench_axi.exe: testbench.v picorv32.v
iverilog -o testbench_axi.exe $(subst $(COMPRESSED_ISA),C,-DCOMPRESSED_ISA) -DAXI_TEST testbench.v picorv32.v
chmod -x testbench_axi.exe
testbench_synth.exe: testbench.v synth.v
iverilog -o testbench_synth.exe testbench.v synth.v
chmod -x testbench_synth.exe
@ -81,7 +77,7 @@ toc:
clean:
rm -vrf $(FIRMWARE_OBJS) $(TEST_OBJS) check.smt2 check.vcd synth.v synth.log \
firmware/firmware.elf firmware/firmware.bin firmware/firmware.hex firmware/firmware.map \
testbench.exe testbench_sp.exe testbench_axi.exe testbench_synth.exe testbench.vcd
testbench.exe testbench_sp.exe testbench_synth.exe testbench.vcd
.PHONY: test view test_sp test_axi test_synth toc clean

View File

@ -299,7 +299,8 @@ that can run one memory transfer at a time:
The core initiates a memory transfer by asserting `mem_valid`. The valid
signal stays high until the peer asserts `mem_ready`. All core outputs
are stable over the `mem_valid` period.
are stable over the `mem_valid` period. If the memory transfer is an
instruction fetch, the core asserts `mem_instr`.
#### Read Transfer
@ -318,6 +319,11 @@ In a write transfer `mem_wstrb` is not 0 and `mem_rdata` is unused. The memory
write the data at `mem_wdata` to the address `mem_addr` and acknowledges the
transfer by asserting `mem_ready`.
The 4 bits of `mem_wstrb` are write enables for the four bytes in the addressed
word. Only the 8 values `0000`, `1111`, `1100`, `0011`, `1000`, `0100`, `0010`,
and `0001` are possible, i.e. no write, write 32 bits, write upper 16 bits,
write lower 16, or write a single byte respectively.
There is no need for an external wait cycle. The memory can acknowledge the
write immediately with `mem_ready` going high in the same cycle as
`mem_valid`, or `mem_ready` being tied to constant 1.

View File

@ -6,20 +6,15 @@
// means.
`timescale 1 ns / 1 ps
// `define VERBOSE
module testbench;
`ifndef VERILATOR
module testbench #(
parameter AXI_TEST = 0,
parameter VERBOSE = 0
);
reg clk = 1;
reg resetn = 0;
reg [31:0] irq;
wire trap;
always @* begin
irq = 0;
irq[4] = &uut.picorv32_core.count_cycle[12:0];
irq[5] = &uut.picorv32_core.count_cycle[15:0];
end
always #5 clk = ~clk;
@ -28,27 +23,92 @@ module testbench;
resetn <= 1;
end
initial begin
if ($test$plusargs("vcd")) begin
$dumpfile("testbench.vcd");
$dumpvars(0, testbench);
end
repeat (1000000) @(posedge clk);
$display("TIMEOUT");
$finish;
end
picorv32_wrapper #(
.AXI_TEST (AXI_TEST),
.VERBOSE (VERBOSE)
) top (
.clk (clk ),
.resetn (resetn)
);
endmodule
`endif
module picorv32_wrapper #(
parameter AXI_TEST = 0,
parameter VERBOSE = 0
) (
input clk,
input resetn
);
wire trap;
reg [31:0] irq;
always @* begin
irq = 0;
irq[4] = &uut.picorv32_core.count_cycle[12:0];
irq[5] = &uut.picorv32_core.count_cycle[15:0];
end
wire mem_axi_awvalid;
reg mem_axi_awready = 0;
wire mem_axi_awready;
wire [31:0] mem_axi_awaddr;
wire [ 2:0] mem_axi_awprot;
wire mem_axi_wvalid;
reg mem_axi_wready = 0;
wire mem_axi_wready;
wire [31:0] mem_axi_wdata;
wire [ 3:0] mem_axi_wstrb;
reg mem_axi_bvalid = 0;
wire mem_axi_bready;
wire mem_axi_bvalid;
wire mem_axi_bready;
wire mem_axi_arvalid;
reg mem_axi_arready = 0;
wire mem_axi_arready;
wire [31:0] mem_axi_araddr;
wire [ 2:0] mem_axi_arprot;
reg mem_axi_rvalid = 0;
wire mem_axi_rvalid;
wire mem_axi_rready;
reg [31:0] mem_axi_rdata;
wire [31:0] mem_axi_rdata;
axi4_memory #(
.AXI_TEST (AXI_TEST),
.VERBOSE (VERBOSE)
) mem (
.clk (clk ),
.mem_axi_awvalid (mem_axi_awvalid ),
.mem_axi_awready (mem_axi_awready ),
.mem_axi_awaddr (mem_axi_awaddr ),
.mem_axi_awprot (mem_axi_awprot ),
.mem_axi_wvalid (mem_axi_wvalid ),
.mem_axi_wready (mem_axi_wready ),
.mem_axi_wdata (mem_axi_wdata ),
.mem_axi_wstrb (mem_axi_wstrb ),
.mem_axi_bvalid (mem_axi_bvalid ),
.mem_axi_bready (mem_axi_bready ),
.mem_axi_arvalid (mem_axi_arvalid ),
.mem_axi_arready (mem_axi_arready ),
.mem_axi_araddr (mem_axi_araddr ),
.mem_axi_arprot (mem_axi_arprot ),
.mem_axi_rvalid (mem_axi_rvalid ),
.mem_axi_rready (mem_axi_rready ),
.mem_axi_rdata (mem_axi_rdata )
);
picorv32_axi #(
`ifdef SP_TEST
@ -83,8 +143,60 @@ module testbench;
.irq (irq )
);
reg [31:0] memory [0:64*1024/4-1];
initial $readmemh("firmware/firmware.hex", memory);
reg [1023:0] firmware_file;
initial begin
if(!$value$plusargs("firmware=%s", firmware_file))
firmware_file = "firmware/firmware.hex";
$readmemh(firmware_file, mem.memory);
end
integer cycle_counter;
always @(posedge clk) begin
cycle_counter <= resetn ? cycle_counter + 1 : 0;
if (resetn && trap) begin
`ifndef VERILATOR
repeat (10) @(posedge clk);
`endif
$display("TRAP after %1d clock cycles", cycle_counter);
$finish;
end
end
endmodule
module axi4_memory #(
parameter AXI_TEST = 0,
parameter VERBOSE = 0
) (
input clk,
input mem_axi_awvalid,
output reg mem_axi_awready = 0,
input [31:0] mem_axi_awaddr,
input [ 2:0] mem_axi_awprot,
input mem_axi_wvalid,
output reg mem_axi_wready = 0,
input [31:0] mem_axi_wdata,
input [ 3:0] mem_axi_wstrb,
output reg mem_axi_bvalid = 0,
input mem_axi_bready,
input mem_axi_arvalid,
output reg mem_axi_arready = 0,
input [31:0] mem_axi_araddr,
input [ 2:0] mem_axi_arprot,
output mem_axi_rvalid = 0,
input mem_axi_rready,
output reg [31:0] mem_axi_rdata
);
reg [31:0] memory [0:64*1024/4-1] /* verilator public */;
reg verbose;
initial verbose = $test$plusargs("verbose") || VERBOSE;
reg axi_test;
initial axi_test = $test$plusargs("axi_test") || AXI_TEST;
reg [63:0] xorshift64_state = 64'd88172645463325252;
@ -101,12 +213,12 @@ module testbench;
reg [4:0] async_axi_transaction = ~0;
reg [4:0] delay_axi_transaction = 0;
`ifdef AXI_TEST
always @(posedge clk) begin
xorshift64_next;
{fast_axi_transaction, async_axi_transaction, delay_axi_transaction} <= xorshift64_state;
if (axi_test) begin
xorshift64_next;
{fast_axi_transaction, async_axi_transaction, delay_axi_transaction} <= xorshift64_state;
end
end
`endif
reg latched_raddr_en = 0;
reg latched_waddr_en = 0;
@ -146,9 +258,8 @@ module testbench;
end endtask
task handle_axi_rvalid; begin
`ifdef VERBOSE
$display("RD: ADDR=%08x DATA=%08x%s", latched_raddr, memory[latched_raddr >> 2], latched_rinsn ? " INSN" : "");
`endif
if(verbose)
$display("RD: ADDR=%08x DATA=%08x%s", latched_raddr, memory[latched_raddr >> 2], latched_rinsn ? " INSN" : "");
if (latched_raddr < 64*1024) begin
mem_axi_rdata <= memory[latched_raddr >> 2];
mem_axi_rvalid <= 1;
@ -160,9 +271,8 @@ module testbench;
end endtask
task handle_axi_bvalid; begin
`ifdef VERBOSE
$display("WR: ADDR=%08x DATA=%08x STRB=%04b", latched_waddr, latched_wdata, latched_wstrb);
`endif
if (verbose)
$display("WR: ADDR=%08x DATA=%08x STRB=%04b", latched_waddr, latched_wdata, latched_wstrb);
if (latched_waddr < 64*1024) begin
if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
@ -170,15 +280,17 @@ module testbench;
if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end else
if (latched_waddr == 32'h1000_0000) begin
`ifdef VERBOSE
if (32 <= latched_wdata && latched_wdata < 128)
$display("OUT: '%c'", latched_wdata);
else
$display("OUT: %3d", latched_wdata);
`else
$write("%c", latched_wdata);
$fflush();
if (verbose) begin
if (32 <= latched_wdata && latched_wdata < 128)
$display("OUT: '%c'", latched_wdata[7:0]);
else
$display("OUT: %3d", latched_wdata);
end else begin
$write("%c", latched_wdata[7:0]);
`ifndef VERILATOR
$fflush();
`endif
end
end else begin
$display("OUT-OF-BOUNDS MEMORY WRITE TO %08x", latched_waddr);
$finish;
@ -237,24 +349,4 @@ module testbench;
if (!mem_axi_rvalid && latched_raddr_en && !delay_axi_transaction[3]) handle_axi_rvalid;
if (!mem_axi_bvalid && latched_waddr_en && latched_wdata_en && !delay_axi_transaction[4]) handle_axi_bvalid;
end
initial begin
if ($test$plusargs("vcd")) begin
$dumpfile("testbench.vcd");
$dumpvars(0, testbench);
end
repeat (1000000) @(posedge clk);
$display("TIMEOUT");
$finish;
end
integer cycle_counter;
always @(posedge clk) begin
cycle_counter <= resetn ? cycle_counter + 1 : 0;
if (resetn && trap) begin
repeat (10) @(posedge clk);
$display("TRAP after %1d clock cycles", cycle_counter);
$finish;
end
end
endmodule