quasar/verif/LEC/LEC_RTL/generated_rtl/ifu_iccm_mem.sv

480 lines
27 KiB
Systemverilog
Raw Normal View History

2021-03-29 21:34:16 +08:00
//********************************************************************************
// SPDX-License-Identifier: Apache-2.0
// Copyright 2020 Western Digital Corporation or its affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//********************************************************************************
//********************************************************************************
// Icache closely coupled memory --- ICCM
//********************************************************************************
module ifu_iccm_mem
`include "parameter.sv"
//#(
// parameter ICCM_BITS,
// parameter ICCM_BANK_INDEX_LO,
// parameter ICCM_INDEX_BITS,
// parameter ICCM_BANK_HI,
// parameter ICCM_NUM_BANKS,
// parameter ICCM_ENABLE= 'b1,
// parameter ICCM_BANK_BITS
//)
(
input logic clk, // Clock only while core active. Through one clock header. For flops with second clock header built in. Connected to ACTIVE_L2CLK.
input logic active_clk, // Clock only while core active. Through two clock headers. For flops without second clock header built in.
input logic rst_l, // reset, active low
input logic clk_override, // Override non-functional clock gating
input logic iccm_wren, // ICCM write enable
input logic iccm_rden, // ICCM read enable
input logic [ICCM_BITS-1:1] iccm_rw_addr, // ICCM read/write address
input logic iccm_buf_correct_ecc, // ICCM is doing a single bit error correct cycle
input logic iccm_correction_state, // ICCM under a correction - This is needed to guard replacements when hit
input logic [2:0] iccm_wr_size, // ICCM write size
input logic [77:0] iccm_wr_data, // ICCM write data
input iccm_ext_in_pkt_t [ICCM_NUM_BANKS-1:0] iccm_ext_in_pkt, // External packet
output logic [63:0] iccm_rd_data, // ICCM read data
output logic [77:0] iccm_rd_data_ecc, // ICCM read ecc
input logic scan_mode // Scan mode control
);
logic [ICCM_NUM_BANKS-1:0] wren_bank;
logic [ICCM_NUM_BANKS-1:0] rden_bank;
logic [ICCM_NUM_BANKS-1:0] iccm_clken;
logic [ICCM_NUM_BANKS-1:0] [ICCM_BITS-1:ICCM_BANK_INDEX_LO] addr_bank;
logic [ICCM_NUM_BANKS-1:0] [38:0] iccm_bank_dout, iccm_bank_dout_fn;
logic [ICCM_NUM_BANKS-1:0] [38:0] iccm_bank_wr_data;
logic [ICCM_BITS-1:1] addr_bank_inc;
logic [ICCM_BANK_HI : 2] iccm_rd_addr_hi_q;
logic [ICCM_BANK_HI : 1] iccm_rd_addr_lo_q;
logic [63:0] iccm_rd_data_pre;
logic [63:0] iccm_data;
logic [1:0] addr_incr;
logic [ICCM_NUM_BANKS-1:0] [38:0] iccm_bank_wr_data_vec;
// logic to handle hard persisten faults
logic [1:0] [ICCM_BITS-1:2] redundant_address;
logic [1:0] [38:0] redundant_data;
logic [1:0] redundant_valid;
logic [ICCM_NUM_BANKS-1:0] sel_red1, sel_red0, sel_red1_q, sel_red0_q;
logic [38:0] redundant_data0_in, redundant_data1_in;
logic redundant_lru, redundant_lru_in, redundant_lru_en;
logic redundant_data0_en;
logic redundant_data1_en;
logic r0_addr_en, r1_addr_en;
// Testing persistent flip
// logic [3:0] not_iccm_bank_dout;
// logic [15:3] ecc_insert_flip_in, ecc_insert_flip;
// logic flip_en, flip_match, flip_match_q;
//
// assign flip_in = (iccm_rw_addr[3:2] != 2'b00); // dont flip when bank0 - this is to make some progress in DMA streaming cases
// assign flip_en = iccm_rden;
//
// rvdffs #(1) flipmatch (.*,
// .clk(clk),
// .din(flip_in),
// .en(flip_en),
// .dout(flip_match_q));
//
// end of testing flip
assign addr_incr[1:0] = (iccm_wr_size[1:0] == 2'b11) ? 2'b10: 2'b01;
assign addr_bank_inc[ICCM_BITS-1 : 1] = iccm_rw_addr[ICCM_BITS-1 : 1] + addr_incr[1:0];
for (genvar i=0; i<ICCM_NUM_BANKS/2; i++) begin: mem_bank_data
assign iccm_bank_wr_data_vec[(2*i)] = iccm_wr_data[38:0];
assign iccm_bank_wr_data_vec[(2*i)+1] = iccm_wr_data[77:39];
end
for (genvar i=0; i<ICCM_NUM_BANKS; i++) begin: mem_bank
assign wren_bank[i] = iccm_wren & ((iccm_rw_addr[ICCM_BANK_HI:2] == i) | (addr_bank_inc[ICCM_BANK_HI:2] == i));
assign iccm_bank_wr_data[i] = iccm_bank_wr_data_vec[i];
assign rden_bank[i] = iccm_rden & ( (iccm_rw_addr[ICCM_BANK_HI:2] == i) | (addr_bank_inc[ICCM_BANK_HI:2] == i));
assign iccm_clken[i] = wren_bank[i] | rden_bank[i] | clk_override;
assign addr_bank[i][ICCM_BITS-1 : ICCM_BANK_INDEX_LO] = wren_bank[i] ? iccm_rw_addr[ICCM_BITS-1 : ICCM_BANK_INDEX_LO] :
((addr_bank_inc[ICCM_BANK_HI:2] == i) ?
addr_bank_inc[ICCM_BITS-1 : ICCM_BANK_INDEX_LO] :
iccm_rw_addr[ICCM_BITS-1 : ICCM_BANK_INDEX_LO]);
`ifdef VERILATOR
el2_ram #(.depth(1<<ICCM_INDEX_BITS), .width(39)) iccm_bank (
// Primary ports
.ME(iccm_clken[i]),
.CLK(clk),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
`else
if (ICCM_INDEX_BITS == 6 ) begin : iccm
ram_64x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 7 ) begin : iccm
ram_128x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 8 ) begin : iccm
ram_256x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 9 ) begin : iccm
ram_512x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 10 ) begin : iccm
ram_1024x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 11 ) begin : iccm
ram_2048x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 12 ) begin : iccm
ram_4096x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 13 ) begin : iccm
ram_8192x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else if (ICCM_INDEX_BITS == 14 ) begin : iccm
ram_16384x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
else begin : iccm
ram_32768x39 iccm_bank (
// Primary ports
.CLK(clk),
.ME(iccm_clken[i]),
.WE(wren_bank[i]),
.ADR(addr_bank[i]),
.D(iccm_bank_wr_data[i][38:0]),
.Q(iccm_bank_dout[i][38:0]),
.ROP ( ),
// These are used by SoC
.TEST1(iccm_ext_in_pkt[i].TEST1),
.RME(iccm_ext_in_pkt[i].RME),
.RM(iccm_ext_in_pkt[i].RM),
.LS(iccm_ext_in_pkt[i].LS),
.DS(iccm_ext_in_pkt[i].DS),
.SD(iccm_ext_in_pkt[i].SD) ,
.TEST_RNM(iccm_ext_in_pkt[i].TEST_RNM),
.BC1(iccm_ext_in_pkt[i].BC1),
.BC2(iccm_ext_in_pkt[i].BC2)
);
end // block: iccm
`endif
// match the redundant rows
assign sel_red1[i] = (redundant_valid[1] & (((iccm_rw_addr[ICCM_BITS-1:2] == redundant_address[1][ICCM_BITS-1:2]) & (iccm_rw_addr[3:2] == i)) |
((addr_bank_inc[ICCM_BITS-1:2]== redundant_address[1][ICCM_BITS-1:2]) & (addr_bank_inc[3:2] == i))));
assign sel_red0[i] = (redundant_valid[0] & (((iccm_rw_addr[ICCM_BITS-1:2] == redundant_address[0][ICCM_BITS-1:2]) & (iccm_rw_addr[3:2] == i)) |
((addr_bank_inc[ICCM_BITS-1:2]== redundant_address[0][ICCM_BITS-1:2]) & (addr_bank_inc[3:2] == i))));
rvdff #(1) selred0 (.*,
.clk(active_clk),
.din(sel_red0[i]),
.dout(sel_red0_q[i]));
rvdff #(1) selred1 (.*,
.clk(active_clk),
.din(sel_red1[i]),
.dout(sel_red1_q[i]));
// muxing out the memory data with the redundant data if the address matches
assign iccm_bank_dout_fn[i][38:0] = ({39{sel_red1_q[i]}} & redundant_data[1][38:0]) |
({39{sel_red0_q[i]}} & redundant_data[0][38:0]) |
({39{~sel_red0_q[i] & ~sel_red1_q[i]}} & iccm_bank_dout[i][38:0]);
end : mem_bank
// This section does the redundancy for tolerating single bit errors
// 2x 39 bit data values with address[hi:2] and a valid bit is needed to CAM and sub out the reads/writes to the particular locations
// Also a LRU flop is kept to decide which of the redundant element to replace.
assign r0_addr_en = ~redundant_lru & iccm_buf_correct_ecc;
assign r1_addr_en = redundant_lru & iccm_buf_correct_ecc;
assign redundant_lru_en = iccm_buf_correct_ecc | (((|sel_red0[ICCM_NUM_BANKS-1:0]) | (|sel_red1[ICCM_NUM_BANKS-1:0])) & iccm_rden & iccm_correction_state);
assign redundant_lru_in = iccm_buf_correct_ecc ? ~redundant_lru : (|sel_red0[ICCM_NUM_BANKS-1:0]) ? 1'b1 : 1'b0;
rvdffs #() red_lru (.*, // LRU flop for the redundant replacements
.clk(active_clk),
.en(redundant_lru_en),
.din(redundant_lru_in),
.dout(redundant_lru));
rvdffs #(ICCM_BITS-2) r0_address (.*, // Redundant Row 0 address
.clk(active_clk),
.en(r0_addr_en),
.din(iccm_rw_addr[ICCM_BITS-1:2]),
.dout(redundant_address[0][ICCM_BITS-1:2]));
rvdffs #(ICCM_BITS-2) r1_address (.*, // Redundant Row 0 address
.clk(active_clk),
.en(r1_addr_en),
.din(iccm_rw_addr[ICCM_BITS-1:2]),
.dout(redundant_address[1][ICCM_BITS-1:2]));
rvdffs #(1) r0_valid (.*,
.clk(active_clk), // Redundant Row 0 Valid
.en(r0_addr_en),
.din(1'b1),
.dout(redundant_valid[0]));
rvdffs #(1) r1_valid (.*, // Redundant Row 1 Valid
.clk(active_clk),
.en(r1_addr_en),
.din(1'b1),
.dout(redundant_valid[1]));
// We will have to update the Redundant copies in addition to the memory on subsequent writes to this memory location.
// The data gets updated on : 1) correction cycle, 2) Future writes - this could be W writes from DMA ( match up till addr[2]) or DW writes ( match till address[3])
// The data to pick also depends on the current address[2], size and the addr[2] stored in the address field of the redundant flop. Correction cycle is always W write and the data is splat on both legs, so choosing lower Word
assign redundant_data0_en = ((iccm_rw_addr[ICCM_BITS-1:3] == redundant_address[0][ICCM_BITS-1:3]) & ((iccm_rw_addr[2] == redundant_address[0][2]) | (iccm_wr_size[1:0] == 2'b11)) & redundant_valid[0] & iccm_wren) |
(~redundant_lru & iccm_buf_correct_ecc);
assign redundant_data0_in[38:0] = (((iccm_rw_addr[2] == redundant_address[0][2]) & iccm_rw_addr[2]) | (redundant_address[0][2] & (iccm_wr_size[1:0] == 2'b11))) ? iccm_wr_data[77:39] : iccm_wr_data[38:0];
rvdffs #(39) r0_data (.*, // Redundant Row 1 data
.clk(active_clk),
.en(redundant_data0_en),
.din(redundant_data0_in[38:0]),
.dout(redundant_data[0][38:0]));
assign redundant_data1_en = ((iccm_rw_addr[ICCM_BITS-1:3] == redundant_address[1][ICCM_BITS-1:3]) & ((iccm_rw_addr[2] == redundant_address[1][2]) | (iccm_wr_size[1:0] == 2'b11)) & redundant_valid[1] & iccm_wren) |
(redundant_lru & iccm_buf_correct_ecc);
assign redundant_data1_in[38:0] = (((iccm_rw_addr[2] == redundant_address[1][2]) & iccm_rw_addr[2]) | (redundant_address[1][2] & (iccm_wr_size[1:0] == 2'b11))) ? iccm_wr_data[77:39] : iccm_wr_data[38:0];
rvdffs #(39) r1_data (.*, // Redundant Row 1 data
.clk(active_clk),
.en(redundant_data1_en),
.din(redundant_data1_in[38:0]),
.dout(redundant_data[1][38:0]));
rvdffs #(ICCM_BANK_HI) rd_addr_lo_ff (.*, .clk(active_clk), .din(iccm_rw_addr [ICCM_BANK_HI:1]), .dout(iccm_rd_addr_lo_q[ICCM_BANK_HI:1]), .en(1'b1)); // bit 0 of address is always 0
rvdffs #(ICCM_BANK_BITS) rd_addr_hi_ff (.*, .clk(active_clk), .din(addr_bank_inc[ICCM_BANK_HI:2]), .dout(iccm_rd_addr_hi_q[ICCM_BANK_HI:2]), .en(1'b1));
assign iccm_rd_data_pre[63:0] = {iccm_bank_dout_fn[iccm_rd_addr_hi_q][31:0], iccm_bank_dout_fn[iccm_rd_addr_lo_q[ICCM_BANK_HI:2]][31:0]};
assign iccm_data[63:0] = 64'({16'b0, (iccm_rd_data_pre[63:0] >> (16*iccm_rd_addr_lo_q[1]))});
assign iccm_rd_data[63:0] = {iccm_data[63:0]};
assign iccm_rd_data_ecc[77:0] = {iccm_bank_dout_fn[iccm_rd_addr_hi_q][38:0], iccm_bank_dout_fn[iccm_rd_addr_lo_q[ICCM_BANK_HI:2]][38:0]};
endmodule // ifu_iccm_mem