package ifu import include._ import lib._ import chisel3._ import chisel3.util._ import chisel3.experimental.chiselName @chiselName class el2_ifu_bp_ctl extends Module with el2_lib with RequireAsyncReset { val io = IO (new Bundle { val active_clk = Input(Clock()) val ic_hit_f = Input(Bool()) val ifc_fetch_addr_f = Input(UInt(31.W)) val ifc_fetch_req_f = Input(Bool()) // Fetch request generated by the IFC // Decode packet containing information if its a brnach or not val dec_tlu_br0_r_pkt = Flipped(Valid(new el2_br_tlu_pkt_t)) val exu_i0_br_fghr_r = Input(UInt(BHT_GHR_SIZE.W)) // Updated GHR from the exu val exu_i0_br_index_r = Input(UInt((BTB_ADDR_HI-BTB_ADDR_LO+1).W)) // Way from where the btb got a hit val dec_tlu_flush_lower_wb = Input(Bool()) val dec_tlu_flush_leak_one_wb = Input(Bool()) val dec_tlu_bpred_disable = Input(Bool()) // Exu misprediction packet val exu_mp_pkt = Flipped(Valid(new el2_predict_pkt_t)) val exu_mp_eghr = Input(UInt(BHT_GHR_SIZE.W)) val exu_mp_fghr = Input(UInt(BHT_GHR_SIZE.W)) val exu_mp_index = Input(UInt((BTB_ADDR_HI-BTB_ADDR_LO+1).W)) // Misprediction index val exu_mp_btag = Input(UInt(BTB_BTAG_SIZE.W)) val exu_flush_final = Input(Bool()) // Signals to the IFU containing information about brnach val ifu_bp_hit_taken_f = Output(Bool()) val ifu_bp_btb_target_f = Output(UInt(31.W)) val ifu_bp_inst_mask_f = Output(Bool()) val ifu_bp_fghr_f = Output(UInt(BHT_GHR_SIZE.W)) val ifu_bp_way_f = Output(UInt(2.W)) val ifu_bp_ret_f = Output(UInt(2.W)) val ifu_bp_hist1_f = Output(UInt(2.W)) val ifu_bp_hist0_f = Output(UInt(2.W)) val ifu_bp_pc4_f = Output(UInt(2.W)) val ifu_bp_valid_f = Output(UInt(2.W)) val ifu_bp_poffset_f = Output(UInt(12.W)) val scan_mode = Input(Bool()) val test = Output(UInt()) }) val TAG_START = 16+BTB_BTAG_SIZE val PC4 = 4 // Branch = pc + 4 (BTB Index) val BOFF = 3 // Branch offset (BTB Index) val CALL = 2 // Branch CALL (BTB Index) val RET = 1 // Branch RET (BTB Index) val BV = 0 // Branch Valid (BTB Index) val LRU_SIZE = BTB_ARRAY_DEPTH val NUM_BHT_LOOP = if(BHT_ARRAY_DEPTH > 16) 16 else BHT_ARRAY_DEPTH val NUM_BHT_LOOP_INNER_HI = if(BHT_ARRAY_DEPTH > 16) BHT_ADDR_LO+3 else BHT_ADDR_HI val NUM_BHT_LOOP_OUTER_LO = if(BHT_ARRAY_DEPTH > 16) BHT_ADDR_LO+4 else BHT_ADDR_LO val BHT_NO_ADDR_MATCH = BHT_ARRAY_DEPTH <= 16 ///////////////////////////////////////////////////////// val leak_one_f = WireInit(Bool(), 0.U) val bht_dir_f = WireInit(UInt(2.W), 0.U) val dec_tlu_error_wb = WireInit(Bool(), 0.U) val btb_error_addr_wb = WireInit(UInt((BTB_ADDR_HI-BTB_ADDR_LO+1).W), 0.U) val btb_bank0_rd_data_way0_f = WireInit(UInt((TAG_START+1).W), 0.U) val btb_bank0_rd_data_way1_f = WireInit(UInt((TAG_START+1).W), 0.U) val btb_bank0_rd_data_way0_p1_f = WireInit(UInt((TAG_START+1).W), 0.U) val btb_bank0_rd_data_way1_p1_f = WireInit(UInt((TAG_START+1).W), 0.U) val eoc_mask = WireInit(Bool(), 0.U) val btb_lru_b0_f = WireInit(UInt(LRU_SIZE.W), init = 0.U) io.test := btb_lru_b0_f val dec_tlu_way_wb = WireInit(Bool(), 0.U) ///////////////////////////////////////////////////////// // Misprediction packet val exu_mp_valid = io.exu_mp_pkt.bits.misp & !leak_one_f val exu_mp_boffset = io.exu_mp_pkt.bits.boffset val exu_mp_pc4 = io.exu_mp_pkt.bits.pc4 val exu_mp_call = io.exu_mp_pkt.bits.pcall val exu_mp_ret = io.exu_mp_pkt.bits.pret val exu_mp_ja = io.exu_mp_pkt.bits.pja val exu_mp_way = io.exu_mp_pkt.bits.way val exu_mp_hist = io.exu_mp_pkt.bits.hist val exu_mp_tgt = io.exu_mp_pkt.bits.toffset val exu_mp_addr = io.exu_mp_index val exu_mp_ataken = io.exu_mp_pkt.bits.ataken // Its a commit or update packet val dec_tlu_br0_v_wb = io.dec_tlu_br0_r_pkt.valid val dec_tlu_br0_hist_wb = io.dec_tlu_br0_r_pkt.bits.hist val dec_tlu_br0_addr_wb = io.exu_i0_br_index_r val dec_tlu_br0_error_wb = io.dec_tlu_br0_r_pkt.bits.br_error val dec_tlu_br0_middle_wb = io.dec_tlu_br0_r_pkt.bits.middle val dec_tlu_br0_way_wb = io.dec_tlu_br0_r_pkt.bits.way val dec_tlu_br0_start_error_wb = io.dec_tlu_br0_r_pkt.bits.br_start_error val exu_i0_br_fghr_wb = io.exu_i0_br_fghr_r dec_tlu_error_wb := dec_tlu_br0_start_error_wb | dec_tlu_br0_error_wb btb_error_addr_wb := dec_tlu_br0_addr_wb dec_tlu_way_wb := dec_tlu_br0_way_wb // Hash the first PC val btb_rd_addr_f = el2_btb_addr_hash(io.ifc_fetch_addr_f) // Second pc = pc +4 val fetch_addr_p1_f = io.ifc_fetch_addr_f(30,1) + 1.U // Hash the second pc val btb_rd_addr_p1_f = el2_btb_addr_hash(Cat(fetch_addr_p1_f,0.U)) // TODO val btb_sel_f = Cat(~bht_dir_f(0),bht_dir_f(0)) // Checking of the pc is a multiple of 4, if it is fetch-start will be "01" val fetch_start_f = Cat(io.ifc_fetch_addr_f(0),~io.ifc_fetch_addr_f(0)) // If there is an error write-back from the dec check if the current pc is equal to the write-bcak pc val branch_error_collision_f = dec_tlu_error_wb & (btb_error_addr_wb === btb_rd_addr_f) val branch_error_collision_p1_f = dec_tlu_error_wb & (btb_error_addr_wb === btb_rd_addr_p1_f) // If there is an error write back but the address are from different bank val branch_error_bank_conflict_f = branch_error_collision_f & dec_tlu_error_wb val branch_error_bank_conflict_p1_f = branch_error_collision_p1_f & dec_tlu_error_wb // Hashing the PC to generate the index for the btb val fetch_rd_tag_f = if(BTB_BTAG_FOLD) el2_btb_tag_hash_fold(io.ifc_fetch_addr_f) else el2_btb_tag_hash(io.ifc_fetch_addr_f) val fetch_rd_tag_p1_f = if(BTB_BTAG_FOLD) el2_btb_tag_hash_fold(Cat(fetch_addr_p1_f,0.U)) else el2_btb_tag_hash(Cat(fetch_addr_p1_f,0.U)) // There is a misprediction and the exu is writing back val fetch_mp_collision_f = (io.exu_mp_btag === fetch_rd_tag_f) & exu_mp_valid & io.ifc_fetch_req_f & (exu_mp_addr === btb_rd_addr_f) val fetch_mp_collision_p1_f = (io.exu_mp_btag === fetch_rd_tag_p1_f) & exu_mp_valid & io.ifc_fetch_req_f & (exu_mp_addr === btb_rd_addr_p1_f) val leak_one_f_d1 = withClock(io.active_clk) {RegNext(leak_one_f, init = 0.U)} val dec_tlu_way_wb_f = withClock(io.active_clk) {RegNext(dec_tlu_way_wb, init = 0.U)} val exu_mp_way_f = withClock(io.active_clk) {RegNext(exu_mp_way, init = 0.U)} val exu_flush_final_d1 = withClock(io.active_clk) {RegNext(io.exu_flush_final, init = 0.U)} // If there is a flush from the lower pipe wait until the flush gets deasserted from the (decode) side leak_one_f := (io.dec_tlu_flush_leak_one_wb & io.dec_tlu_flush_lower_wb) | (leak_one_f_d1 & io.dec_tlu_flush_lower_wb) // For a tag to match the branch should be valid tag should match and a fetch request should be generated // Also there should be no bank conflict or leak-one val tag_match_way0_f = btb_bank0_rd_data_way0_f(BV) & (btb_bank0_rd_data_way0_f(TAG_START,17) === fetch_rd_tag_f) & !(dec_tlu_way_wb_f & branch_error_bank_conflict_f) & io.ifc_fetch_req_f & !leak_one_f // Similar to the way-0 -> way-1 val tag_match_way1_f = btb_bank0_rd_data_way1_f(BV) & (btb_bank0_rd_data_way1_f(TAG_START,17) === fetch_rd_tag_f) & !(dec_tlu_way_wb_f & branch_error_bank_conflict_f) & io.ifc_fetch_req_f & !leak_one_f // Similar to above matches val tag_match_way0_p1_f = btb_bank0_rd_data_way0_p1_f(BV) & (btb_bank0_rd_data_way0_p1_f(TAG_START,17) === fetch_rd_tag_p1_f) & !(dec_tlu_way_wb_f & branch_error_bank_conflict_f) & io.ifc_fetch_req_f & !leak_one_f // Similar to above matches val tag_match_way1_p1_f = btb_bank0_rd_data_way1_p1_f(BV) & (btb_bank0_rd_data_way1_p1_f(TAG_START,17) === fetch_rd_tag_p1_f) & !(dec_tlu_way_wb_f & branch_error_bank_conflict_f) & io.ifc_fetch_req_f & !leak_one_f // Reordering to avoid multiple hit val tag_match_way0_expanded_f = Cat(tag_match_way0_f & (btb_bank0_rd_data_way0_f(BOFF) ^ btb_bank0_rd_data_way0_f(PC4)), tag_match_way0_f & !(btb_bank0_rd_data_way0_f(BOFF) ^ btb_bank0_rd_data_way0_f(PC4))) val tag_match_way1_expanded_f = Cat(tag_match_way1_f & (btb_bank0_rd_data_way1_f(BOFF) ^ btb_bank0_rd_data_way1_f(PC4)), tag_match_way1_f & !(btb_bank0_rd_data_way1_f(BOFF) ^ btb_bank0_rd_data_way1_f(PC4))) val tag_match_way0_expanded_p1_f = Cat(tag_match_way0_p1_f & (btb_bank0_rd_data_way0_p1_f(BOFF) ^ btb_bank0_rd_data_way0_p1_f(PC4)), tag_match_way0_p1_f & !(btb_bank0_rd_data_way0_p1_f(BOFF) ^ btb_bank0_rd_data_way0_p1_f(PC4))) val tag_match_way1_expanded_p1_f = Cat(tag_match_way1_p1_f & (btb_bank0_rd_data_way1_p1_f(BOFF) ^ btb_bank0_rd_data_way1_p1_f(PC4)), tag_match_way1_p1_f & !(btb_bank0_rd_data_way1_p1_f(BOFF) ^ btb_bank0_rd_data_way1_p1_f(PC4))) // Final hit calculation val wayhit_f = tag_match_way0_expanded_f | tag_match_way1_expanded_f val wayhit_p1_f = tag_match_way0_expanded_p1_f | tag_match_way1_expanded_p1_f // Chopping off the ways that had a hit btb_vbank0_rd_data_f // e-> Lower half o-> Upper half val btb_bank0e_rd_data_f = Mux1H(Seq(tag_match_way0_expanded_f(0).asBool->btb_bank0_rd_data_way0_f, tag_match_way1_expanded_f(0).asBool->btb_bank0_rd_data_way1_f)) val btb_bank0o_rd_data_f = Mux1H(Seq(tag_match_way0_expanded_f(1).asBool->btb_bank0_rd_data_way0_f, tag_match_way1_expanded_f(1).asBool->btb_bank0_rd_data_way1_f)) val btb_bank0e_rd_data_p1_f = Mux1H(Seq(tag_match_way0_expanded_p1_f(0).asBool->btb_bank0_rd_data_way0_p1_f, tag_match_way1_expanded_p1_f(0).asBool->btb_bank0_rd_data_way1_p1_f)) // Making virtual banks, made from pc-bit(1) if it comes from a multiple of 4 we get the lower half of the bank // and the upper half of the bank-0 in vbank 1 val btb_vbank0_rd_data_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0)->btb_bank0e_rd_data_f, io.ifc_fetch_addr_f(0)->btb_bank0o_rd_data_f)) val btb_vbank1_rd_data_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0)->btb_bank0o_rd_data_f, io.ifc_fetch_addr_f(0)->btb_bank0e_rd_data_p1_f)) // Branch prediction info is sent with the 2byte lane associated with the end of the branch. // Cases // BANK1 BANK0 // ------------------------------- // | : | : | // ------------------------------- // <------------> : PC4 branch, offset, should be in B1 (indicated on [2]) // <------------> : PC4 branch, no offset, indicate PC4, VALID, HIST on [1] // <------------> : PC4 branch, offset, indicate PC4, VALID, HIST on [0] // <------> : PC2 branch, offset, indicate VALID, HIST on [1] // <------> : PC2 branch, no offset, indicate VALID, HIST on [0] // Make an LRU value with execution mis-prediction val mp_wrindex_dec = 1.U << exu_mp_addr // Make an LRU value with current read pc val fetch_wrindex_dec = 1.U << btb_rd_addr_f // Make an LRU value with current read pc + 4 val fetch_wrindex_p1_dec = 1.U << btb_rd_addr_p1_f // Checking if the mis-prediction was valid or not and make a new LRU value val mp_wrlru_b0 = mp_wrindex_dec & Fill(LRU_SIZE, exu_mp_valid) val vwayhit_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0).asBool->wayhit_f, io.ifc_fetch_addr_f(0).asBool->Cat(wayhit_p1_f(0), wayhit_f(1)))) & Cat(eoc_mask, 1.U(1.W)) // Is the update of the lru valid or not val lru_update_valid_f = (vwayhit_f(0) | vwayhit_f(1)) & io.ifc_fetch_req_f & !leak_one_f val fetch_wrlru_b0 = fetch_wrindex_dec & Fill(LRU_SIZE, lru_update_valid_f) val fetch_wrlru_p1_b0 = fetch_wrindex_p1_dec & Fill(LRU_SIZE, lru_update_valid_f) val btb_lru_b0_hold = ~mp_wrlru_b0 & ~fetch_wrlru_b0 // If there is a collision the use the mis-predicted value as output and update accordingly val use_mp_way = fetch_mp_collision_f val use_mp_way_p1 = fetch_mp_collision_p1_f // Calculate the lru next value and flop it val btb_lru_b0_ns : UInt = Mux1H(Seq(!exu_mp_way.asBool -> mp_wrlru_b0, tag_match_way0_f.asBool -> fetch_wrlru_b0, tag_match_way0_p1_f.asBool -> fetch_wrlru_p1_b0)) | btb_lru_b0_hold & btb_lru_b0_f val btb_lru_rd_f = Mux(use_mp_way.asBool, exu_mp_way_f, (fetch_wrindex_dec & btb_lru_b0_f).orR) val btb_lru_rd_p1_f = Mux(use_mp_way_p1.asBool, exu_mp_way_f, (fetch_wrindex_p1_dec & btb_lru_b0_f).orR) // Similar to the vbank make vlru val btb_vlru_rd_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0) -> Cat(btb_lru_rd_f, btb_lru_rd_f), io.ifc_fetch_addr_f(0).asBool -> Cat(btb_lru_rd_p1_f, btb_lru_rd_f))) // virtual way depending on pc value val tag_match_vway1_expanded_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0).asBool->tag_match_way1_expanded_f, io.ifc_fetch_addr_f(0).asBool->Cat(tag_match_way1_expanded_p1_f(0),tag_match_way1_expanded_f(1)))) io.ifu_bp_way_f := tag_match_vway1_expanded_f | (~vwayhit_f & btb_vlru_rd_f) // update the lru btb_lru_b0_f := rvdffe(btb_lru_b0_ns, (io.ifc_fetch_req_f|exu_mp_valid).asBool, clock, io.scan_mode) //io.test := btb_lru_b0_ns // Checking if the end of line is near val eoc_near = io.ifc_fetch_addr_f(ICACHE_BEAT_ADDR_HI-1, 2).andR // Mask according to eoc-near and make the hit-final eoc_mask := !eoc_near | (~io.ifc_fetch_addr_f(1,0)).orR() val btb_sel_data_f = WireInit(UInt(16.W), init = 0.U) val hist1_raw = WireInit(UInt(2.W), init = 0.U) // Filteing out portion of BTB read after virtual banking // Entry -> tag[pt.BTB_BTAG_SIZE-1:0], toffset[11:0], pc4, boffset, call, ret, valid val btb_rd_tgt_f = btb_sel_data_f(15,4) val btb_rd_pc4_f = btb_sel_data_f(3) val btb_rd_call_f = btb_sel_data_f(1) val btb_rd_ret_f = btb_sel_data_f(0) // This is 1-index shifted to that of the btb-data-read so we have 1-bit shifted btb_sel_data_f := Mux1H(Seq(btb_sel_f(1).asBool-> btb_vbank1_rd_data_f(16,1), btb_sel_f(0).asBool-> btb_vbank0_rd_data_f(16,1))) // No lower flush or bp-disabple and a fetch request is generated with virtual way hit io.ifu_bp_hit_taken_f := (vwayhit_f & hist1_raw).orR & io.ifc_fetch_req_f & !leak_one_f_d1 & !io.dec_tlu_bpred_disable // If the prediction is a call or ret btb entry then do not check the bht just force a taken with data from the RAS val bht_force_taken_f = Cat( btb_vbank1_rd_data_f(CALL) | btb_vbank1_rd_data_f(RET) , btb_vbank0_rd_data_f(CALL) | btb_vbank0_rd_data_f(RET)) val bht_valid_f = vwayhit_f val bht_bank1_rd_data_f =WireInit(UInt(2.W), 0.U) val bht_bank0_rd_data_f =WireInit(UInt(2.W), 0.U) val bht_bank0_rd_data_p1_f =WireInit(UInt(2.W), 0.U) // Depending on pc make the virtual bank as commented above val bht_vbank0_rd_data_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0).asBool->bht_bank0_rd_data_f, io.ifc_fetch_addr_f(0).asBool->bht_bank1_rd_data_f)) val bht_vbank1_rd_data_f = Mux1H(Seq(!io.ifc_fetch_addr_f(0).asBool->bht_bank1_rd_data_f, io.ifc_fetch_addr_f(0).asBool->bht_bank0_rd_data_p1_f)) // Direction containing data of both banks direction bht_dir_f := Cat((bht_force_taken_f(1) | bht_vbank1_rd_data_f(1)) & bht_valid_f(1), (bht_force_taken_f(0) | bht_vbank0_rd_data_f(1)) & bht_valid_f(0)) // If the branch is taken then pass btb sel else 0 io.ifu_bp_inst_mask_f := (io.ifu_bp_hit_taken_f & btb_sel_f(1)) | !io.ifu_bp_hit_taken_f // hist 1 shows both banks direction hist1_raw := bht_force_taken_f | Cat(bht_vbank1_rd_data_f(1), bht_vbank0_rd_data_f(1)) // hist 0 shows the both bank strength val hist0_raw = Cat(bht_vbank1_rd_data_f(0), bht_vbank0_rd_data_f(0)) // pc4: if the branch is pc+4 val pc4_raw = Cat(vwayhit_f(1) & btb_vbank1_rd_data_f(PC4), vwayhit_f(0) & btb_vbank0_rd_data_f(PC4)) // Its a call call or ret branch val pret_raw = Cat(vwayhit_f(1) & !btb_vbank1_rd_data_f(CALL) & btb_vbank1_rd_data_f(RET), vwayhit_f(0) & !btb_vbank0_rd_data_f(CALL) & btb_vbank0_rd_data_f(RET)) // count number of 1's in bht_valid val num_valids = bht_valid_f(1) +& bht_valid_f(0) // To calculate a merged ghr meaning the is a overlapping 1 in sel and dir val final_h = (btb_sel_f & bht_dir_f).orR val fghr = WireInit(UInt(BHT_GHR_SIZE.W), 0.U) val merged_ghr = Mux1H(Seq((num_valids===2.U).asBool->Cat(fghr(BHT_GHR_SIZE-3,0), 0.U, final_h), (num_valids===1.U).asBool->Cat(fghr(BHT_GHR_SIZE-2,0), final_h), (num_valids===0.U).asBool->Cat(fghr(BHT_GHR_SIZE-1,0)))) val exu_flush_ghr = io.exu_mp_fghr val fghr_ns = Wire(UInt(BHT_GHR_SIZE.W)) // If there is a exu-flush use its ghr // If there is a hit and a fetch then use the merged-ghr // If there is no hit or fetch then hold value fghr_ns := Mux1H(Seq(exu_flush_final_d1.asBool->exu_flush_ghr, (!exu_flush_final_d1 & io.ifc_fetch_req_f & io.ic_hit_f & !leak_one_f_d1).asBool -> merged_ghr, (!exu_flush_final_d1 & !(io.ifc_fetch_req_f & io.ic_hit_f & !leak_one_f_d1)).asBool -> fghr)) fghr := withClock(io.active_clk) {RegNext(fghr_ns, init = 0.U)} io.ifu_bp_fghr_f := fghr io.ifu_bp_hist1_f := hist1_raw io.ifu_bp_hist0_f := hist0_raw io.ifu_bp_pc4_f := pc4_raw io.ifu_bp_valid_f := vwayhit_f & ~Fill(2, io.dec_tlu_bpred_disable) io.ifu_bp_ret_f := pret_raw // block fetch to calculate if there is a hit with fetch request and a taken branch then compute the branch offset val bloc_f = Cat((bht_dir_f(0) & !fetch_start_f(0)) | (!bht_dir_f(0) & fetch_start_f(0)), (bht_dir_f(0) & fetch_start_f(0)) | (!bht_dir_f(0) & !fetch_start_f(0))) val use_fa_plus = !bht_dir_f(0) & io.ifc_fetch_addr_f(0) & !btb_rd_pc4_f val btb_fg_crossing_f = fetch_start_f(0) & btb_sel_f(0) & btb_rd_pc4_f val bp_total_branch_offset_f = bloc_f(1)^btb_rd_pc4_f val ifc_fetch_adder_prior = rvdffe(io.ifc_fetch_addr_f(30,1), (io.ifc_fetch_req_f & !io.ifu_bp_hit_taken_f & io.ic_hit_f).asBool, clock, io.scan_mode) io.ifu_bp_poffset_f := btb_rd_tgt_f val adder_pc_in_f = Mux1H(Seq(use_fa_plus.asBool -> fetch_addr_p1_f, btb_fg_crossing_f.asBool -> ifc_fetch_adder_prior, (!btb_fg_crossing_f & !use_fa_plus).asBool-> io.ifc_fetch_addr_f(30,1))) // Calculate the branch target by adding the offset val bp_btb_target_adder_f = rvbradder(Cat(adder_pc_in_f(29,0),bp_total_branch_offset_f, 0.U), Cat(btb_rd_tgt_f,0.U)) val rets_out = Wire(Vec(RET_STACK_SIZE, UInt(32.W))) rets_out := (0 until RET_STACK_SIZE).map(i=>0.U) // Final target if its a RET then pop else take the target pc io.ifu_bp_btb_target_f := Mux((btb_rd_ret_f & !btb_rd_call_f & rets_out(0)(0)).asBool, rets_out(0)(31,1),bp_btb_target_adder_f(31,1)) // Return stack val bp_rs_call_target_f = rvbradder(Cat(adder_pc_in_f(29,0),bp_total_branch_offset_f, 0.U), Cat(Fill(11, 0.U),~btb_rd_pc4_f, 0.U)) val rs_push = btb_rd_call_f & !btb_rd_ret_f & io.ifu_bp_hit_taken_f val rs_pop = btb_rd_ret_f & !btb_rd_call_f & io.ifu_bp_hit_taken_f val rs_hold = !rs_push & !rs_pop val rsenable = (0 until RET_STACK_SIZE).map(i=> if(i==0) !rs_hold else if(i==RET_STACK_SIZE-1) rs_push else rs_push | rs_pop) // Make the input of the RAS val rets_in = (0 until RET_STACK_SIZE).map(i=> if(i==0) Mux1H(Seq(rs_push.asBool -> Cat(bp_rs_call_target_f(31,1),1.U), rs_pop.asBool -> rets_out(1))) else if(i==RET_STACK_SIZE-1) rets_out(i-1) else Mux1H(Seq(rs_push.asBool->rets_out(i-1), rs_pop.asBool ->rets_out(i+1)))) // Make flops for poping the data rets_out := (0 until RET_STACK_SIZE).map(i=>rvdffe(rets_in(i), rsenable(i).asBool, clock, io.scan_mode)) val btb_valid = exu_mp_valid & (!dec_tlu_error_wb) val btb_wr_tag = io.exu_mp_btag // Making the data to write into the BTB according the structure discribed above val btb_wr_data = Cat(btb_wr_tag, exu_mp_tgt, exu_mp_pc4, exu_mp_boffset, exu_mp_call | exu_mp_ja, exu_mp_ret | exu_mp_ja, btb_valid) val exu_mp_valid_write = exu_mp_valid & exu_mp_ataken // Enable for write on each way val btb_wr_en_way0 = ((!exu_mp_way) & exu_mp_valid_write & (!dec_tlu_error_wb)) | ((!dec_tlu_way_wb) & dec_tlu_error_wb) val btb_wr_en_way1 = (exu_mp_way & exu_mp_valid_write & (!dec_tlu_error_wb)) | (dec_tlu_way_wb & dec_tlu_error_wb) // Writing is always done from dec or exu check if the dec have a valid data val btb_wr_addr = Mux(dec_tlu_error_wb.asBool , btb_error_addr_wb, exu_mp_addr) val middle_of_bank = exu_mp_pc4 ^ exu_mp_boffset // Enable the clk enable according to the exu misprediction where it is not a RAS val bht_wr_en0 = Fill(2, exu_mp_valid & !exu_mp_call & !exu_mp_ret & !exu_mp_ja) & Cat(middle_of_bank, ~middle_of_bank) val bht_wr_en2 = Fill(2, dec_tlu_br0_v_wb) & Cat(dec_tlu_br0_middle_wb, ~dec_tlu_br0_middle_wb) val bht_wr_data0 = exu_mp_hist val bht_wr_data2 = dec_tlu_br0_hist_wb // Hash each read and write address val mp_hashed = el2_btb_ghr_hash(Cat(exu_mp_addr,0.U(2.W)), io.exu_mp_eghr) val br0_hashed_wb = el2_btb_ghr_hash(Cat(dec_tlu_br0_addr_wb,0.U(2.W)), exu_i0_br_fghr_wb) val bht_rd_addr_hashed_f = el2_btb_ghr_hash(Cat(btb_rd_addr_f,0.U(2.W)), fghr) val bht_rd_addr_hashed_p1_f = el2_btb_ghr_hash(Cat(btb_rd_addr_p1_f,0.U(2.W)), fghr) val bht_wr_addr0 = mp_hashed val bht_wr_addr2 = br0_hashed_wb val bht_rd_addr_f = bht_rd_addr_hashed_f val bht_rd_addr_p1_f = bht_rd_addr_hashed_p1_f // BTB // Entry -> Tag[BTB-BTAG-SIZE], toffset[12], pc4, boffset, call, ret, valid val btb_bank0_rd_data_way0_out = (0 until LRU_SIZE).map(i=>rvdffe(btb_wr_data, ((btb_wr_addr===i.U) & btb_wr_en_way0).asBool, clock, io.scan_mode)) val btb_bank0_rd_data_way1_out = (0 until LRU_SIZE).map(i=>rvdffe(btb_wr_data, ((btb_wr_addr===i.U) & btb_wr_en_way1).asBool, clock, io.scan_mode)) btb_bank0_rd_data_way0_f := Mux1H((0 until LRU_SIZE).map(i=>(btb_rd_addr_f===i.U).asBool->btb_bank0_rd_data_way0_out(i))) btb_bank0_rd_data_way1_f := Mux1H((0 until LRU_SIZE).map(i=>(btb_rd_addr_f===i.U).asBool->btb_bank0_rd_data_way1_out(i))) // BTB read muxing btb_bank0_rd_data_way0_p1_f := Mux1H((0 until LRU_SIZE).map(i=>(btb_rd_addr_p1_f===i.U).asBool->btb_bank0_rd_data_way0_out(i))) btb_bank0_rd_data_way1_p1_f := Mux1H((0 until LRU_SIZE).map(i=>(btb_rd_addr_p1_f===i.U).asBool->btb_bank0_rd_data_way1_out(i))) val bht_bank_clken = Wire(Vec(2, Vec(BHT_ARRAY_DEPTH/NUM_BHT_LOOP, Bool()))) val bht_bank_clk = (0 until 2).map(i=>(0 until (BHT_ARRAY_DEPTH/NUM_BHT_LOOP)).map(k=>rvclkhdr(clock, bht_bank_clken(i)(k), io.scan_mode))) for(i<-0 until 2; k<- 0 until (BHT_ARRAY_DEPTH/NUM_BHT_LOOP)){ // Checking if there is a write enable with address for the BHT bht_bank_clken(i)(k) := (bht_wr_en0(i) & ((bht_wr_addr0(BHT_ADDR_HI-BHT_ADDR_LO,NUM_BHT_LOOP_OUTER_LO-2)===k.U) | BHT_NO_ADDR_MATCH.B)) | (bht_wr_en2(i) & ((bht_wr_addr2(BHT_ADDR_HI-BHT_ADDR_LO,NUM_BHT_LOOP_OUTER_LO-2)===k.U) | BHT_NO_ADDR_MATCH.B)) } // Writing data into the BHT (DEC-side) or (EXU-side) val bht_bank_wr_data = (0 until 2).map(i=>(0 until BHT_ARRAY_DEPTH/NUM_BHT_LOOP).map(k=>(0 until NUM_BHT_LOOP).map(j=> Mux((bht_wr_en2(i)&(bht_wr_addr2(NUM_BHT_LOOP_INNER_HI-BHT_ADDR_LO,0)===j.U)&(bht_wr_addr2(BHT_ADDR_HI-BHT_ADDR_LO,NUM_BHT_LOOP_OUTER_LO-BHT_ADDR_LO)===k.U)|BHT_NO_ADDR_MATCH.B).asBool, bht_wr_data2, bht_wr_data0)))) val bht_bank_sel = Wire(Vec(2, Vec(BHT_ARRAY_DEPTH/NUM_BHT_LOOP, Vec(NUM_BHT_LOOP, Bool())))) // We have a 2 way bht with BHT_ARRAY_DEPTH/NUM_BHT_LOOP blocks and NUM_BHT_LOOP->offset in each block // Make enables of each flop according to the address dividing the address in 2-blocks upper block for BHT-Block and // the lower block for the offset and run this on both of the ways for(i<-0 until 2; k<-0 until BHT_ARRAY_DEPTH/NUM_BHT_LOOP; j<- 0 until NUM_BHT_LOOP){ bht_bank_sel(i)(k)(j) := (bht_wr_en0(i) & (bht_wr_addr0(NUM_BHT_LOOP_INNER_HI-BHT_ADDR_LO,0)===j.asUInt) & ((bht_wr_addr0(BHT_ADDR_HI-BHT_ADDR_LO, NUM_BHT_LOOP_OUTER_LO-BHT_ADDR_LO)===k.asUInt) | BHT_NO_ADDR_MATCH.B)) | (bht_wr_en2(i) & (bht_wr_addr2(NUM_BHT_LOOP_INNER_HI-BHT_ADDR_LO,0)===j.asUInt) & ((bht_wr_addr2(BHT_ADDR_HI-BHT_ADDR_LO, NUM_BHT_LOOP_OUTER_LO-BHT_ADDR_LO)===k.asUInt) | BHT_NO_ADDR_MATCH.B)) } // Reading the BHT with i->way, k->block and the j->offset val bht_bank_rd_data_out = Wire(Vec(2, Vec(BHT_ARRAY_DEPTH, UInt(2.W)))) for(i<-0 until 2; k<-0 until BHT_ARRAY_DEPTH/NUM_BHT_LOOP; j<-0 until NUM_BHT_LOOP){ bht_bank_rd_data_out(i)((16*k)+j) := withClock(bht_bank_clk(i)(k)){RegEnable(bht_bank_wr_data(i)(k)(j), 0.U, bht_bank_sel(i)(k)(j))} } // Make the final read mux bht_bank0_rd_data_f := Mux1H((0 until BHT_ARRAY_DEPTH).map(i=>(bht_rd_addr_f===i.U).asBool->bht_bank_rd_data_out(0)(i))) bht_bank1_rd_data_f := Mux1H((0 until BHT_ARRAY_DEPTH).map(i=>(bht_rd_addr_f===i.U).asBool->bht_bank_rd_data_out(1)(i))) bht_bank0_rd_data_p1_f := Mux1H((0 until BHT_ARRAY_DEPTH).map(i=>(bht_rd_addr_p1_f===i.U).asBool->bht_bank_rd_data_out(0)(i))) } object ifu_bp extends App { println((new chisel3.stage.ChiselStage).emitVerilog(new el2_ifu_bp_ctl())) }