# Another RISC-V ISA simulator. **This code is suitable to hard refactor at any time** This is another RISC-V ISA simulator, this is coded in SystemC + TLM-2. It supports RV32IMAC Instruction set by now. [![travis](https://travis-ci.org/mariusmm/RISC-V-TLM.svg?branch=master)](https://travis-ci.org/mariusmm/RISC-V-TLM) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/0f7ccc8435f14ce2b241b3bfead772a2)](https://www.codacy.com/app/mariusmm/RISC-V-TLM?utm_source=github.com&utm_medium=referral&utm_content=mariusmm/RISC-V-TLM&utm_campaign=Badge_Grade) [![license](https://img.shields.io/badge/license-GNU--3.0-green.svg)](https://github.com/mariusmm/RISC-V-TLM/blob/master/LICENSE) [![Twitter URL](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/mariusmonton) --- Table of Contents ================= * [Another RISC-V ISA simulator.](./README.md#another-risc-v-isa-simulator) * [Table of Contents](./README.md#table-of-contents) * [Description](./README.md#description) * [Structure](./README.md#structure) * [TODO](./README.md#todo) * [Compile](./README.md#compile) * [Docker container](./README.md#docker-container) * [How to use Docker](./README.md#how-to-use-docker) * [Test](./README.md#test) * [C code](./README.md#c-code) * [FreeRTOS](./README.md#freertos) * [Documentation](./README.md#documentation) * [Contribute](./README.md#contribute) * [License](./README.md#license) ## Description Brief description of the modules: * CPU: Top entity that includes all other modules. * Memory: Memory highly based on TLM-2 example with read file capability * Registers: Implements the register file, PC register & CSR registers * Execute: Executes ISA instructions * Executes C instruction extensions * Executes M instruction extensions * Executes A instruction extensions * Instruction: Decodes instruction and acces to any instruction field * C_Instruction: Decodes Compressed instructions (C extension) * M_Instruction: Decodes Multiplication and Division instructions (M extension) * A_Instruction: Decodes Atomic instructions (A extension) * Simulator: Top-level entity that builds & starts the simulation * BusCtrl: Simple bus manager * Trace: Simple trace peripheral * Timer: Simple IRQ programable real-time counter peripheral Helper classes: * Performance: Performance indicators stores here (singleton class) * Log: Log class to log them all (singleton class) Current performance is about 1.500.000 instructions / sec in a Intel Core i5-5200@2.2Ghz ### Structure ![Modules' hierarchy](https://github.com/mariusmm/RISC-V-TLM/blob/master/doc/Hierarchy.png) ## TODO This is a preliminar and incomplete version. Task to do: - [x] Implement all missing instructions (Execute) - [x] Implement CSRs (where/how?) - [ ] Add full support to read file with memory contents (to memory.h) - [ ] .elf files - [x] .hex files (only partial .hex support) - [ ] Connect some TLM peripherals - [x] Debug module similiar to ARM's ITM - [ ] Some standard UART model - [ ] ... - [ ] Implement interrupts - [x] implement timer (mtimecmp) & timer interrupt - [ ] generic IRQ comtroller - [x] Test, test, test & test. I'm sure there are a ~~lot of~~ some bugs in the code - [x] riscv-test almost complete (see [Test](https://github.com/mariusmm/RISC-V-TLM/wiki/Tests)) - [ ] riscv-compliance WiP * Improve structure and modules hierarchy * Add 64 & 128 bits architecture (RV64I, RV128I) ## Compile In order to compile the project you need SystemC-2.3.2 installed in your system. Just change SYSTEMC path in Makefile. ``` $ make ``` Then, you need to modifiy your LD_LIBRARY_PATH environtment variable to add path systemc library. In my case: ``` $ export LD_LIBRARY_PATH=/home/marius/Work/RiscV/code/systemc-2.3.2/lib-linux64 ``` And then you can execute the simulator: ``` $ ./RISCV_TLM asm/BasicLoop.hex ``` ## Docker container There is a Docker container available with the latest release at https://hub.docker.com/r/mariusmm/riscv-tlm. This container has RISCV-TLM already build at /usr/src/riscv64/RISCV-TLM directory. ### How to use Docker ``` $ docker pull mariusmm/riscv-tlm $ docker run -v :/tmp -it mariusmm/riscv-tlm /bin/bash # cd /usr/src/riscv64/RISCV_TLM/ # ./RISCV_TLM /tmp/ ``` I'm using docker image [zmors/riscv_gcc](https://hub.docker.com/r/zmors/riscv_gcc) to have a cross-compiler, I'm using both docker images this way: ``` console1: $ docker run -v /tmp:/PRJ -it zmors/riscv_gcc:1 bash # cd /PRJ/func3 # make console2: $ docker run -v /tmp:/tmp -it mariusmm/riscv-tlm /bin/bash # cd /usr/src/riscv64/RISC-V-TLM/ # ./RISCV-TLM /tmp/file.hex ... ``` Performance is not affected by running the simulator inside the container ## Test See [Test page](Test) for more information. In the asm directory there are some basic assembly examples. I "compile" one file with the follwing command: ``` $ cd asm $ riscv32-unknown-elf-as EternalLoop.asm -o EternalLoop.o $ riscv32-unknown-elf-ld -T ../my_linker_script.ld EternalLoop.o -o EternalLoop.elf $ riscv32-unknown-elf-objcopy -O ihex EternalLoop.elf EternalLoop.hex $ cd .. $ ./RISCV_SCTLM asm/EternalLoop.hex ``` This example needs that you hit Ctr+C to stop execution. ### C code The C directory contains simple examples in C. Each directory contains an example, to compile it just: ``` $ make ``` and then execute the .hex file like the example before. ### FreeRTOS FreeRTOS can run in this simulator! In test/FreeRTOS/ directory there is portable files (port.c, portmacro.c portasm.S) and main file (freertos_test.c) ported to this RISC-V model. ## Documentation The code is documented using doxygen. In the doc folder there is a Doxygen.cfg file ready to be used. ## Contribute There are several ways to contribute to this project: * Test * Pull request are welcome (see TODO list) * Good documentation ## License Copyright (C) 2018 Màrius Montón ([\@mariusmonton](https://twitter.com/mariusmonton/)) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see .