risc-v-tlm/inc/A_extension.h

521 lines
14 KiB
C++

/*!
\file A_extension.h
\brief Implement A extensions part of the RISC-V
\author Màrius Montón
\date December 2018
*/
// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef A_EXTENSION__H
#define A_EXTENSION__H
#include "systemc"
#include <unordered_set>
#include "Registers.h"
#include "MemoryInterface.h"
#include "extension_base.h"
namespace riscv_tlm {
typedef enum {
OP_A_LR,
OP_A_SC,
OP_A_AMOSWAP,
OP_A_AMOADD,
OP_A_AMOXOR,
OP_A_AMOAND,
OP_A_AMOOR,
OP_A_AMOMIN,
OP_A_AMOMAX,
OP_A_AMOMINU,
OP_A_AMOMAXU,
OP_A_ERROR
} op_A_Codes;
typedef enum {
A_LR = 0b00010,
A_SC = 0b00011,
A_AMOSWAP = 0b00001,
A_AMOADD = 0b00000,
A_AMOXOR = 0b00100,
A_AMOAND = 0b01100,
A_AMOOR = 0b01000,
A_AMOMIN = 0b10000,
A_AMOMAX = 0b10100,
A_AMOMINU = 0b11000,
A_AMOMAXU = 0b11100,
} A_Codes;
/**
* @brief Instruction decoding and fields access
*/
template<typename T>
class A_extension : public extension_base<T> {
public:
/**
* @brief Constructor, same as base class
*/
using extension_base<T>::extension_base;
/**
* @brief Access to opcode field
* @return return opcode field
*/
inline std::uint32_t opcode() const override {
return static_cast<std::uint32_t>(this->m_instr.range(31, 27));
}
/**
* @brief Decodes opcode of instruction
* @return opcode of instruction
*/
op_A_Codes decode() const {
switch (opcode()) {
case A_LR:
return OP_A_LR;
break;
case A_SC:
return OP_A_SC;
break;
case A_AMOSWAP:
return OP_A_AMOSWAP;
break;
case A_AMOADD:
return OP_A_AMOADD;
break;
case A_AMOXOR:
return OP_A_AMOXOR;
break;
case A_AMOAND:
return OP_A_AMOAND;
break;
case A_AMOOR:
return OP_A_AMOOR;
break;
case A_AMOMIN:
return OP_A_AMOMIN;
break;
case A_AMOMAX:
return OP_A_AMOMAX;
break;
case A_AMOMINU:
return OP_A_AMOMINU;
break;
case A_AMOMAXU:
return OP_A_AMOMAXU;
break;
[[unlikely]] default:
return OP_A_ERROR;
break;
}
return OP_A_ERROR;
}
inline void dump() const override {
std::cout << std::hex << "0x" << this->m_instr << std::dec << std::endl;
}
bool Exec_A_LR() {
std::uint32_t mem_addr = 0;
int rd, rs1, rs2;
std::uint32_t data;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
if (rs2 != 0) {
std::cout << "ILEGAL INSTRUCTION, LR.W: rs2 != 0" << std::endl;
this->RaiseException(EXCEPTION_CAUSE_ILLEGAL_INSTRUCTION, this->m_instr);
return false;
}
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
TLB_reserve(mem_addr);
this->logger->debug("{} ns. PC: 0x{:x}. A.LR.W: x{:d}(0x{:x}) -> x{:d}(0x{:x}) ",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, mem_addr, rd, data);
return true;
}
bool Exec_A_SC() {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->regs->getValue(rs2);
if (TLB_reserved(mem_addr)) {
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->regs->setValue(rd, 0); // SC writes 0 to rd on success
} else {
this->regs->setValue(rd, 1); // SC writes nonzero on failure
}
this->logger->debug("{} ns. PC: 0x{:x}. A.SC.W: (0x{:x}) <- x{:d}(0x{:x}) ",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
mem_addr, rs2, data);
return true;
}
bool Exec_A_AMOSWAP() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
std::uint32_t aux;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// swap
aux = this->regs->getValue(rs2);
this->regs->setValue(rs2, static_cast<int32_t>(data));
this->mem_intf->writeDataMem(mem_addr, aux, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOSWAP");
return true;
}
bool Exec_A_AMOADD() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// add
data = data + this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOADD");
return true;
}
bool Exec_A_AMOXOR() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// add
data = data ^ this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOXOR");
return true;
}
bool Exec_A_AMOAND() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// add
data = data & this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOAND");
return true;
}
bool Exec_A_AMOOR() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// add
data = data | this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOOR");
return true;
}
bool Exec_A_AMOMIN() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
std::uint32_t aux;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// min
aux = this->regs->getValue(rs2);
if ((int32_t) data < (int32_t) aux) {
aux = data;
}
this->mem_intf->writeDataMem(mem_addr, aux, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOMIN");
return true;
}
bool Exec_A_AMOMAX() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
std::uint32_t aux;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// >
aux = this->regs->getValue(rs2);
if ((int32_t) data > (int32_t) aux) {
aux = data;
}
this->mem_intf->writeDataMem(mem_addr, aux, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOMAX");
return true;
}
bool Exec_A_AMOMINU() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
std::uint32_t aux;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// min
aux = this->regs->getValue(rs2);
if (data < aux) {
aux = data;
}
this->mem_intf->writeDataMem(mem_addr, aux, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOMINU");
return true;
}
bool Exec_A_AMOMAXU() const {
std::uint32_t mem_addr;
int rd, rs1, rs2;
std::uint32_t data;
std::uint32_t aux;
/* These instructions must be atomic */
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
mem_addr = this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<int32_t>(data));
// max
aux = this->regs->getValue(rs2);
if (data > aux) {
aux = data;
}
this->mem_intf->writeDataMem(mem_addr, aux, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. A.AMOMAXU");
return true;
}
void TLB_reserve(std::uint32_t address) {
TLB_A_Entries.insert(address);
}
bool TLB_reserved(std::uint32_t address) {
if (TLB_A_Entries.count(address) == 1) {
TLB_A_Entries.erase(address);
return true;
} else {
return false;
}
}
bool process_instruction(Instruction &inst) {
bool PC_not_affected = true;
this->setInstr(inst.getInstr());
switch (decode()) {
case OP_A_LR:
Exec_A_LR();
break;
case OP_A_SC:
Exec_A_SC();
break;
case OP_A_AMOSWAP:
Exec_A_AMOSWAP();
break;
case OP_A_AMOADD:
Exec_A_AMOADD();
break;
case OP_A_AMOXOR:
Exec_A_AMOXOR();
break;
case OP_A_AMOAND:
Exec_A_AMOAND();
break;
case OP_A_AMOOR:
Exec_A_AMOOR();
break;
case OP_A_AMOMIN:
Exec_A_AMOMIN();
break;
case OP_A_AMOMAX:
Exec_A_AMOMAX();
break;
case OP_A_AMOMINU:
Exec_A_AMOMINU();
break;
case OP_A_AMOMAXU:
Exec_A_AMOMAXU();
break;
[[unlikely]] default:
std::cout << "A instruction not implemented yet" << std::endl;
inst.dump();
this->NOP();
break;
}
return PC_not_affected;
}
private:
std::unordered_set<std::uint32_t> TLB_A_Entries;
};
}
#endif