risc-v-tlm/inc/M_extension.h

353 lines
11 KiB
C++

/*!
\file M_extension.h
\brief Implement M extensions part of the RISC-V
\author Màrius Montón
\date November 2018
*/
// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef M_EXTENSION__H
#define M_EXTENSION__H
#include "systemc"
#include "extension_base.h"
#include "Registers.h"
namespace riscv_tlm {
typedef enum {
OP_M_MUL,
OP_M_MULH,
OP_M_MULHSU,
OP_M_MULHU,
OP_M_DIV,
OP_M_DIVU,
OP_M_REM,
OP_M_REMU,
OP_M_ERROR
} op_M_Codes;
typedef enum {
M_MUL = 0b000,
M_MULH = 0b001,
M_MULHSU = 0b010,
M_MULHU = 0b011,
M_DIV = 0b100,
M_DIVU = 0b101,
M_REM = 0b110,
M_REMU = 0b111,
} M_Codes;
/**
* @brief Instruction decoding and fields access
*/
template<typename T>
class M_extension : public extension_base<T> {
public:
/**
* @brief Constructor, same as base clase
*/
using extension_base<T>::extension_base;
/**
* @brief Decodes opcode of instruction
* @return opcode of instruction
*/
[[nodiscard]] op_M_Codes decode() const {
switch (opcode()) {
case M_MUL:
return OP_M_MUL;
break;
case M_MULH:
return OP_M_MULH;
break;
case M_MULHSU:
return OP_M_MULHSU;
break;
case M_MULHU:
return OP_M_MULHU;
break;
case M_DIV:
return OP_M_DIV;
break;
case M_DIVU:
return OP_M_DIVU;
break;
case M_REM:
return OP_M_REM;
break;
case M_REMU:
return OP_M_REMU;
break;
[[unlikely]] default:
return OP_M_ERROR;
break;
}
return OP_M_ERROR;
}
inline void dump() const override {
std::cout << std::hex << "0x" << this->m_instr << std::dec << std::endl;
}
void Exec_M_MUL() const {
unsigned int rd, rs1, rs2;
std::int32_t multiplier, multiplicand;
std::int64_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
multiplier = static_cast<std::int32_t>(extension_base<T>::regs->getValue(rs1));
multiplicand = static_cast<std::int32_t>(extension_base<T>::regs->getValue(rs2));
result = static_cast<std::int64_t>(multiplier * multiplicand);
result = result & 0x00000000FFFFFFFF;
this->regs->setValue(rd, static_cast<std::int32_t>(result));
this->logger->debug("{} ns. PC: 0x{:x}. M.MUL: x{:d} * x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
extension_base<T>::regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_MULH() const {
unsigned int rd, rs1, rs2;
std::int32_t multiplier, multiplicand;
std::int64_t result;
std::int32_t ret_value;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
multiplier = static_cast<std::int32_t>(this->regs->getValue(rs1));
multiplicand = static_cast<std::int32_t>(this->regs->getValue(rs2));
result = static_cast<std::int64_t>(multiplier) * static_cast<std::int64_t>(multiplicand);
ret_value = static_cast<std::int32_t>((result >> 32) & 0x00000000FFFFFFFF);
this->regs->setValue(rd, ret_value);
this->logger->debug("{} ns. PC: 0x{:x}. M.MULH: x{:d} * x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_MULHSU() const {
unsigned int rd, rs1, rs2;
std::int32_t multiplier;
std::uint32_t multiplicand;
std::int64_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
multiplier = static_cast<std::int32_t>(this->regs->getValue(rs1));
multiplicand = this->regs->getValue(rs2);
result = static_cast<std::int64_t>(multiplier * static_cast<std::uint64_t>(multiplicand));
result = (result >> 32) & 0x00000000FFFFFFFF;
this->regs->setValue(rd, static_cast<std::int32_t>(result));
this->logger->debug("{} ns. PC: 0x{:x}. M.MULHSU: x{:d} * x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_MULHU() const {
unsigned int rd, rs1, rs2;
std::uint32_t multiplier, multiplicand;
std::uint64_t result;
std::int32_t ret_value;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
multiplier = static_cast<std::int32_t>(this->regs->getValue(rs1));
multiplicand = static_cast<std::int32_t>(this->regs->getValue(rs2));
result = static_cast<std::uint64_t>(multiplier) * static_cast<std::uint64_t>(multiplicand);
ret_value = static_cast<std::int32_t>((result >> 32) & 0x00000000FFFFFFFF);
this->regs->setValue(rd, ret_value);
this->logger->debug("{} ns. PC: 0x{:x}. M.MULHU: x{:d} * x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_DIV() const {
unsigned int rd, rs1, rs2;
std::int32_t divisor, dividend;
std::int64_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
dividend = static_cast<std::int32_t>(this->regs->getValue(rs1));
divisor = static_cast<std::int32_t>(this->regs->getValue(rs2));
if (divisor == 0) {
result = -1;
} else if ((divisor == -1) && (dividend == static_cast<std::int32_t>(0x80000000))) {
result = 0x0000000080000000;
} else {
result = dividend / divisor;
result = result & 0x00000000FFFFFFFF;
}
this->regs->setValue(rd, static_cast<std::int32_t>(result));
this->logger->debug("{} ns. PC: 0x{:x}. M.DIV: x{:d} / x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_DIVU() const {
unsigned int rd, rs1, rs2;
std::uint32_t divisor, dividend;
std::uint64_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
dividend = this->regs->getValue(rs1);
divisor = this->regs->getValue(rs2);
if (divisor == 0) {
result = -1;
} else {
result = dividend / divisor;
result = result & 0x00000000FFFFFFFF;
}
this->regs->setValue(rd, static_cast<std::int32_t>(result));
this->logger->debug("{} ns. PC: 0x{:x}. M.DIVU: x{:d} / x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_REM() const {
unsigned int rd, rs1, rs2;
std::int32_t divisor, dividend;
std::int32_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
dividend = static_cast<std::int32_t>(this->regs->getValue(rs1));
divisor = static_cast<std::int32_t>(this->regs->getValue(rs2));
if (divisor == 0) {
result = dividend;
} else if ((divisor == -1) && (dividend == static_cast<std::int32_t>(0x80000000))) {
result = 0;
} else {
result = dividend % divisor;
}
this->regs->setValue(rd, result);
this->logger->debug("{} ns. PC: 0x{:x}. M.REM: x{:d} / x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
void Exec_M_REMU() const {
unsigned int rd, rs1, rs2;
std::uint32_t divisor, dividend;
std::uint32_t result;
rd = this->get_rd();
rs1 = this->get_rs1();
rs2 = this->get_rs2();
dividend = static_cast<std::int32_t>(this->regs->getValue(rs1));
divisor = static_cast<std::int32_t>(this->regs->getValue(rs2));
if (divisor == 0) {
result = dividend;
} else {
result = dividend % divisor;
}
this->regs->setValue(rd, static_cast<std::int32_t>(result));
this->logger->debug("{} ns. PC: 0x{:x}. M.REMU: x{:d} / x{:d} -> x{:d}({:d})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, result);
}
bool process_instruction(Instruction &inst) {
this->setInstr(inst.getInstr());
switch (decode()) {
case OP_M_MUL:
Exec_M_MUL();
break;
case OP_M_MULH:
Exec_M_MULH();
break;
case OP_M_MULHSU:
Exec_M_MULHSU();
break;
case OP_M_MULHU:
Exec_M_MULHU();
break;
case OP_M_DIV:
Exec_M_DIV();
break;
case OP_M_DIVU:
Exec_M_DIVU();
break;
case OP_M_REM:
Exec_M_REM();
break;
case OP_M_REMU:
Exec_M_REMU();
break;
[[unlikely]] default:
std::cout << "M instruction not implemented yet" << "\n";
inst.dump();
//NOP(inst);
sc_core::sc_stop();
break;
}
return true;
}
private:
/**
* @brief Access to opcode field
* @return return opcode field
*/
[[nodiscard]] inline std::uint32_t opcode() const override {
return static_cast<std::uint32_t>(this->m_instr.range(14, 12));
}
};
}
#endif