risc-v-tlm/inc/C_extension.h

1139 lines
37 KiB
C++

/*!
\file C_extension.h
\brief Implement C extensions part of the RISC-V
\author Màrius Montón
\date August 2018
*/
// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef C_EXTENSION__H
#define C_EXTENSION__H
#include "systemc"
#include "extension_base.h"
namespace riscv_tlm {
typedef enum {
OP_C_ADDI4SPN,
OP_C_FLD,
OP_C_LW,
OP_C_FLW,
OP_C_FSD,
OP_C_SW,
OP_C_FSW,
OP_C_NOP,
OP_C_ADDI,
OP_C_JAL,
OP_C_LI,
OP_C_ADDI16SP,
OP_C_LUI,
OP_C_SRLI,
OP_C_SRAI,
OP_C_ANDI,
OP_C_SUB,
OP_C_XOR,
OP_C_OR,
OP_C_AND,
OP_C_J,
OP_C_BEQZ,
OP_C_BNEZ,
OP_C_SLLI,
OP_C_FLDSP,
OP_C_LWSP,
OP_C_FLWSP,
OP_C_JR,
OP_C_MV,
OP_C_EBREAK,
OP_C_JALR,
OP_C_ADD,
OP_C_FSDSP,
OP_C_SWSP,
OP_C_FSWSP,
OP_C_ERROR
} op_C_Codes;
typedef enum {
C_ADDI4SPN = 0b000,
C_FLD = 0b001,
C_LW = 0b010,
C_FLW = 0b011,
C_FSD = 0b101,
C_SW = 0b110,
C_FSW = 0b111,
C_ADDI = 0b000,
C_JAL = 0b001,
C_LI = 0b010,
C_ADDI16SP = 0b011,
C_SRLI = 0b100,
C_2_SRLI = 0b00,
C_2_SRAI = 0b01,
C_2_ANDI = 0b10,
C_2_SUB = 0b11,
C_3_SUB = 0b00,
C_3_XOR = 0b01,
C_3_OR = 0b10,
C_3_AND = 0b11,
C_J = 0b101,
C_BEQZ = 0b110,
C_BNEZ = 0b111,
C_SLLI = 0b000,
C_FLDSP = 0b001,
C_LWSP = 0b010,
C_FLWSP = 0b011,
C_JR = 0b100,
C_FDSP = 0b101,
C_SWSP = 0b110,
C_FWWSP = 0b111,
} C_Codes;
/**
* @brief Instruction decoding and fields access
*/
template<typename T>
class C_extension : public extension_base<T> {
public:
/**
* @brief Constructor, same as base clase
*/
using extension_base<T>::extension_base;
/**
* @brief Access to opcode field
* @return return opcode field
*/
[[nodiscard]] inline std::uint32_t opcode() const override {
return static_cast<std::uint32_t>(this->m_instr.range(1, 0));
}
[[nodiscard]] inline std::uint32_t get_rdp() const {
return static_cast<std::uint32_t>(this->m_instr.range(4, 2) + 8);
}
/**
* @brief Access to rs1 field
* @return rs1 field
*/
[[nodiscard]] inline std::uint32_t get_rs1() const override {
return static_cast<std::uint32_t>(this->m_instr.range(11, 7));
}
inline void set_rs1(std::uint32_t value) override {
this->m_instr.range(11, 7) = value;
}
[[nodiscard]] inline std::uint32_t get_rs1p() const {
return static_cast<std::uint32_t>(this->m_instr.range(9, 7) + 8);
}
/**
* @brief Access to rs2 field
* @return rs2 field
*/
[[nodiscard]] inline std::uint32_t get_rs2() const override {
return static_cast<std::uint32_t>(this->m_instr.range(6, 2));
}
inline void set_rs2(std::uint32_t value) override {
this->m_instr.range(6, 2) = value;
}
[[nodiscard]] inline std::uint32_t get_rs2p() const {
return static_cast<std::uint32_t>(this->m_instr.range(4, 2) + 8);
}
[[nodiscard]] inline std::uint32_t get_funct3() const override {
return static_cast<std::uint32_t>(this->m_instr.range(15, 13));
}
inline void set_funct3(std::uint32_t value) override {
this->m_instr.range(15, 13) = value;
}
/**
* @brief Access to immediate field for I-type
* @return immediate_I field
*/
[[nodiscard]] inline std::int32_t get_imm_I() const {
std::int32_t aux = 0;
aux = static_cast<std::int32_t>(this->m_instr.range(31, 20));
/* sign extension (optimize) */
if (this->m_instr[31] == 1) {
aux |= (0b11111111111111111111) << 12;
}
return aux;
}
inline void set_imm_I(std::uint32_t value) {
this->m_instr.range(31, 20) = value;
}
/**
* @brief Access to immediate field for S-type
* @return immediate_S field
*/
[[nodiscard]] inline std::int32_t get_imm_S() const {
std::int32_t aux = 0;
aux = static_cast<std::int32_t>(this->m_instr.range(31, 25) << 5);
aux |= static_cast<std::int32_t>(this->m_instr.range(11, 7));
if (this->m_instr[31] == 1) {
aux |= (0b11111111111111111111) << 12;
}
return aux;
}
inline void set_imm_S(std::uint32_t value) {
sc_dt::sc_uint<32> aux = value;
this->m_instr.range(31, 25) = aux.range(11, 5);
this->m_instr.range(11, 7) = aux.range(4, 0);
}
/**
* @brief Access to immediate field for U-type
* @return immediate_U field
*/
[[nodiscard]] inline std::uint32_t get_imm_U() const {
return static_cast<std::uint32_t>(this->m_instr.range(31, 12));
}
inline void set_imm_U(std::uint32_t value) {
this->m_instr.range(31, 12) = (value << 12);
}
/**
* @brief Access to immediate field for B-type
* @return immediate_B field
*/
[[nodiscard]] inline std::int32_t get_imm_B() const {
std::int32_t aux = 0;
aux |= static_cast<std::int32_t>(this->m_instr[7] << 11);
aux |= static_cast<std::int32_t>(this->m_instr.range(30, 25) << 5);
aux |= static_cast<std::int32_t>(this->m_instr[31] << 12);
aux |= static_cast<std::int32_t>(this->m_instr.range(11, 8) << 1);
if (this->m_instr[31] == 1) {
aux |= (0b11111111111111111111) << 12;
}
return aux;
}
inline void set_imm_B(std::uint32_t value) {
sc_dt::sc_uint<32> aux = value;
this->m_instr[31] = aux[12];
this->m_instr.range(30, 25) = aux.range(10, 5);
this->m_instr.range(11, 7) = aux.range(4, 1);
this->m_instr[6] = aux[11];
}
/**
* @brief Access to immediate field for J-type
* @return immediate_J field
*/
[[nodiscard]] inline std::int32_t get_imm_J() const {
std::int32_t aux = 0;
aux = static_cast<std::int32_t>(this->m_instr[12] << 11);
aux |= static_cast<std::int32_t>(this->m_instr[11] << 4);
aux |= static_cast<std::int32_t>(this->m_instr[10] << 9);
aux |= static_cast<std::int32_t>(this->m_instr[9] << 8);
aux |= static_cast<std::int32_t>(this->m_instr[8] << 10);
aux |= static_cast<std::int32_t>(this->m_instr[7] << 6);
aux |= static_cast<std::int32_t>(this->m_instr[6] << 7);
aux |= static_cast<std::int32_t>(this->m_instr.range(5, 3) << 1);
aux |= static_cast<std::int32_t>(this->m_instr[2] << 5);
if (this->m_instr[12] == 1) {
aux |= 0b11111111111111111111 << 12;
}
return aux;
}
inline void set_imm_J(std::uint32_t value) {
sc_dt::sc_uint<32> aux = (value << 20);
this->m_instr[31] = aux[20];
this->m_instr.range(30, 21) = aux.range(10, 1);
this->m_instr[20] = aux[11];
this->m_instr.range(19, 12) = aux.range(19, 12);
}
[[nodiscard]] inline std::int32_t get_imm_L() const {
std::int32_t aux = 0;
aux = static_cast<std::int32_t>(this->m_instr.range(12, 10) << 3);
aux |= static_cast<std::int32_t>(this->m_instr[6] << 2);
aux |= static_cast<std::int32_t>(this->m_instr[5] << 6);
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_LWSP() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr[12] << 5);
aux |= static_cast<std::uint32_t>(this->m_instr.range(6, 4) << 2);
aux |= static_cast<std::uint32_t>(this->m_instr.range(3, 2) << 6);
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_ADDI() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr[12] << 5);
aux |= static_cast<std::uint32_t>(this->m_instr.range(6, 2));
if (this->m_instr[12] == 1) {
aux |= 0b11111111111111111111111111 << 6;
}
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_ADDI4SPN() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr.range(12, 11) << 4);
aux |= static_cast<std::uint32_t>(this->m_instr.range(10, 7) << 6);
aux |= static_cast<std::uint32_t>(this->m_instr[6] << 2);
aux |= static_cast<std::uint32_t>(this->m_instr[5] << 3);
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_ADDI16SP() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr[12] << 9);
aux |= static_cast<std::uint32_t>(this->m_instr[6] << 4);
aux |= static_cast<std::uint32_t>(this->m_instr[5] << 6);
aux |= static_cast<std::uint32_t>(this->m_instr[4] << 8);
aux |= static_cast<std::uint32_t>(this->m_instr[3] << 7);
aux |= static_cast<std::uint32_t>(this->m_instr[2] << 5);
if (this->m_instr[12] == 1) {
aux |= 0b1111111111111111111111 << 10;
}
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_CSS() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr.range(12, 9) << 2);
aux |= static_cast<std::uint32_t>(this->m_instr.range(8, 7) << 6);
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_CB() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr[12] << 8);
aux |= static_cast<std::uint32_t>(this->m_instr[11] << 4);
aux |= static_cast<std::uint32_t>(this->m_instr[10] << 3);
aux |= static_cast<std::uint32_t>(this->m_instr[6] << 7);
aux |= static_cast<std::uint32_t>(this->m_instr[5] << 6);
aux |= static_cast<std::uint32_t>(this->m_instr[4] << 2);
aux |= static_cast<std::uint32_t>(this->m_instr[3] << 1);
aux |= static_cast<std::uint32_t>(this->m_instr[2] << 5);
if (this->m_instr[12] == 1) {
aux |= 0b11111111111111111111111 << 9;
}
return aux;
}
[[nodiscard]] inline std::uint32_t get_imm_LUI() const {
std::uint32_t aux = 0;
aux = static_cast<std::uint32_t>(this->m_instr[12] << 17);
aux |= static_cast<std::uint32_t>(this->m_instr.range(6, 2) << 12);
if (this->m_instr[12] == 1) {
aux |= 0b111111111111111 << 17;
}
return aux;
}
[[nodiscard]] inline std::uint32_t get_csr() const {
return get_imm_I();
}
/**
* @brief Decodes opcode of instruction
* @return opcode of instruction
*/
[[nodiscard]] op_C_Codes decode() const {
switch (opcode()) {
case 0b00:
switch (get_funct3()) {
case C_ADDI4SPN:
return OP_C_ADDI4SPN;
break;
case C_FLD:
return OP_C_FLD;
break;
case C_LW:
return OP_C_LW;
break;
case C_FLW:
return OP_C_FLW;
break;
case C_FSD:
return OP_C_FSD;
break;
case C_SW:
return OP_C_SW;
break;
case C_FSW:
return OP_C_FSW;
break;
[[unlikely]] default:
return OP_C_ERROR;
break;
}
break;
case 0b01:
switch (get_funct3()) {
case C_ADDI:
return OP_C_ADDI;
break;
case C_JAL:
return OP_C_JAL;
break;
case C_LI:
return OP_C_LI;
break;
case C_ADDI16SP:
return OP_C_ADDI16SP;
break;
case C_SRLI:
switch (this->m_instr.range(11, 10)) {
case C_2_SRLI:
return OP_C_SRLI;
break;
case C_2_SRAI:
return OP_C_SRAI;
break;
case C_2_ANDI:
return OP_C_ANDI;
break;
case C_2_SUB:
switch (this->m_instr.range(6, 5)) {
case C_3_SUB:
return OP_C_SUB;
break;
case C_3_XOR:
return OP_C_XOR;
break;
case C_3_OR:
return OP_C_OR;
break;
case C_3_AND:
return OP_C_AND;
break;
}
}
break;
case C_J:
return OP_C_J;
break;
case C_BEQZ:
return OP_C_BEQZ;
break;
case C_BNEZ:
return OP_C_BNEZ;
break;
[[unlikely]] default:
return OP_C_ERROR;
break;
}
break;
case 0b10:
switch (get_funct3()) {
case C_SLLI:
return OP_C_SLLI;
break;
case C_FLDSP:
case C_LWSP:
return OP_C_LWSP;
break;
case C_FLWSP:
return OP_C_FLWSP;
break;
case C_JR:
if (this->m_instr[12] == 0) {
if (this->m_instr.range(6, 2) == 0) {
return OP_C_JR;
} else {
return OP_C_MV;
}
} else {
if (this->m_instr.range(11, 2) == 0) {
return OP_C_EBREAK;
} else if (this->m_instr.range(6, 2) == 0) {
return OP_C_JALR;
} else {
return OP_C_ADD;
}
}
break;
case C_FDSP:
break;
case C_SWSP:
return OP_C_SWSP;
break;
case C_FWWSP:
[[unlikely]]
default:
return OP_C_ERROR;
break;
}
break;
[[unlikely]] default:
return OP_C_ERROR;
break;
}
return OP_C_ERROR;
}
bool Exec_C_JR() {
std::uint32_t mem_addr;
unsigned int rs1;
std::uint32_t new_pc;
rs1 = get_rs1();
mem_addr = 0;
new_pc = static_cast<std::int32_t>(
static_cast<std::int32_t>((this->regs->getValue(rs1)) + static_cast<std::int32_t>(mem_addr)) &
0xFFFFFFFE);
this->logger->debug("{} ns. PC: 0x{:x}. C.JR: PC <- 0x{:x}", sc_core::sc_time_stamp().value(),
this->regs->getPC(), new_pc);
this->regs->setPC(new_pc);
return true;
}
bool Exec_C_MV() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = this->get_rd();
rs1 = 0;
rs2 = get_rs2();
calc = this->regs->getValue(rs1) + this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.MV: x{:d}(0x{:x}) + x{:d}(0x{:x}) -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, this->regs->getValue(rs1), rs2, this->regs->getValue(rs2), rd, calc);
return true;
}
bool Exec_C_ADD() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = get_rs1();
rs1 = get_rs1();
rs2 = get_rs2();
calc = this->regs->getValue(rs1) + this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.ADD: x{:d} + x{} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, calc);
return true;
}
bool Exec_C_LWSP() {
std::uint32_t mem_addr;
unsigned int rd, rs1;
std::int32_t imm;
std::uint32_t data;
// lw rd, offset[7:2](x2)
rd = this->get_rd();
rs1 = 2;
imm = static_cast<std::int32_t>(get_imm_LWSP());
mem_addr = imm + this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<std::int32_t>(data));
this->regs->setValue(rd, data);
this->logger->debug("{} ns. PC: 0x{:x}. C.LWSP: x{:d} + {:d}(@0x{:x}) -> x{:d}({:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, imm, mem_addr, rd, data);
return true;
}
bool Exec_C_ADDI4SPN() {
unsigned int rd, rs1;
std::int32_t imm;
std::int32_t calc;
rd = get_rdp();
rs1 = 2;
imm = static_cast<std::int32_t>(get_imm_ADDI4SPN());
if (imm == 0) {
this->RaiseException(EXCEPTION_CAUSE_ILLEGAL_INSTRUCTION, this->m_instr);
return false;
}
calc = static_cast<std::int32_t>(this->regs->getValue(rs1)) + imm;
this->regs->setValue(rd, calc);
this->logger->debug("{} ns. PC: 0x{:x}. C.ADDI4SN: x{:d} + (0x{:x}) + {:d} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, this->regs->getValue(rs1), imm, rd, calc);
return true;
}
bool Exec_C_ADDI16SP() {
// addi x2, x2, nzimm[9:4]
unsigned int rd;
std::int32_t imm;
if (this->get_rd() == 2) {
int rs1;
std::int32_t calc;
rd = 2;
rs1 = 2;
imm = static_cast<std::int32_t>(get_imm_ADDI16SP());
calc = static_cast<std::int32_t>(this->regs->getValue(rs1)) + imm;
this->regs->setValue(rd, calc);
this->logger->debug("{} ns. PC: 0x{:x}. C.ADDI16SP: x{:d} + {:d} -> x{:d} (0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, imm, rd, calc);
} else {
/* C.LUI OPCODE */
rd = this->get_rd();
imm = static_cast<std::int32_t>(get_imm_LUI());
this->regs->setValue(rd, imm);
this->logger->debug("{} ns. PC: 0x{:x}. C.LUI: x{:d} <- 0x{:x}", sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rd, imm);
}
return true;
}
bool Exec_C_SWSP() {
// sw rs2, offset(x2)
std::uint32_t mem_addr;
unsigned int rs1, rs2;
std::int32_t imm;
std::uint32_t data;
rs1 = 2;
rs2 = get_rs2();
imm = static_cast<std::int32_t>(get_imm_CSS());
mem_addr = imm + this->regs->getValue(rs1);
data = this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. C.SWSP: x{:d}(0x{:x}) -> x{:d} + {} (@0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs2, data, rs1, imm, mem_addr);
return true;
}
bool Exec_C_BEQZ() {
unsigned int rs1;
std::uint32_t new_pc;
std::uint32_t val1;
rs1 = get_rs1p();
val1 = this->regs->getValue(rs1);
if (val1 == 0) {
new_pc = static_cast<std::uint32_t>(this->regs->getPC()) + get_imm_CB();
this->regs->setPC(new_pc);
} else {
this->regs->incPCby2();
new_pc = static_cast<std::uint32_t>(this->regs->getPC());
}
this->logger->debug("{} ns. PC: 0x{:x}. C.BEQZ: x{:d}(0x{:x}) == 0? -> PC (0xx{:d})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, val1, new_pc);
return true;
}
bool Exec_C_BNEZ() {
unsigned int rs1;
std::uint32_t new_pc;
std::uint32_t val1;
rs1 = get_rs1p();
val1 = this->regs->getValue(rs1);
if (val1 != 0) {
new_pc = static_cast<std::uint32_t>(this->regs->getPC()) + get_imm_CB();
this->regs->setPC(new_pc);
} else {
this->regs->incPCby2(); //PC <- PC +2
new_pc = static_cast<std::uint32_t>(this->regs->getPC());
}
this->logger->debug("{} ns. PC: 0x{:x}. C.BNEZ: x{:d}(0x{:x}) != 0? -> PC (0xx{:d})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, val1, new_pc);
return true;
}
bool Exec_C_LI() {
unsigned int rd, rs1;
std::int32_t imm;
std::int32_t calc;
rd = this->get_rd();
rs1 = 0;
imm = static_cast<std::int32_t>(get_imm_ADDI());
calc = static_cast<std::int32_t>(this->regs->getValue(rs1)) + imm;
this->regs->setValue(rd, calc);
this->logger->debug("{} ns. PC: 0x{:x}. C.LI: x{:d} ({:d}) + {:d} -> x{:d}(0x{:x}) ",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, this->regs->getValue(rs1), imm, rd, calc);
return true;
}
bool Exec_C_SRLI() {
unsigned int rd, rs1, rs2;
std::uint32_t shift;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2();
shift = rs2 & 0x1F;
calc = static_cast<std::uint32_t>(this->regs->getValue(rs1)) >> shift;
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.SRLI: x{:d} >> {} -> x{:d}", sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, shift, rd);
return true;
}
bool Exec_C_SRAI() {
unsigned int rd, rs1, rs2;
std::uint32_t shift;
std::int32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2();
shift = rs2 & 0x1F;
calc = static_cast<std::int32_t>(this->regs->getValue(rs1)) >> shift;
this->regs->setValue(rd, calc);
this->logger->debug("{} ns. PC: 0x{:x}. C.SRAI: x{:d} >> {} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, shift, rd, calc);
return true;
}
bool Exec_C_SLLI() {
unsigned int rd, rs1, rs2;
std::uint32_t shift;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_imm_ADDI();
shift = rs2 & 0x1F;
calc = static_cast<std::uint32_t>(this->regs->getValue(rs1)) << shift;
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.SLLI: x{:d} << {} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, shift, rd, calc);
return true;
}
bool Exec_C_ANDI() {
unsigned int rd, rs1;
std::uint32_t imm;
std::uint32_t aux;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
imm = get_imm_ADDI();
aux = this->regs->getValue(rs1);
calc = aux & imm;
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.ANDI: x{:d}(0x{:x}) AND 0x{:x} -> x{:d}",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, aux, imm, rd);
return true;
}
bool Exec_C_SUB() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2p();
calc = this->regs->getValue(rs1) - this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.SUB: x{:d} - x{:d} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd, calc);
return true;
}
bool Exec_C_XOR() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2p();
calc = this->regs->getValue(rs1) ^ this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.XOR: x{:d} XOR x{:d} -> x{:d}", sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd);
return true;
}
bool Exec_C_OR() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2p();
calc = this->regs->getValue(rs1) | this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.OR: x{:d} OR x{:d} -> x{:d}", sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd);
return true;
}
bool Exec_C_AND() {
unsigned int rd, rs1, rs2;
std::uint32_t calc;
rd = get_rs1p();
rs1 = get_rs1p();
rs2 = get_rs2p();
calc = this->regs->getValue(rs1) & this->regs->getValue(rs2);
this->regs->setValue(rd, static_cast<std::int32_t>(calc));
this->logger->debug("{} ns. PC: 0x{:x}. C.AND: x{:d} AND x{:d} -> x{:d}", sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rs1, rs2, rd);
return true;
}
bool Exec_C_ADDI() const {
unsigned int rd, rs1;
std::int32_t imm;
std::int32_t calc;
rd = this->get_rd();
rs1 = rd;
imm = static_cast<std::int32_t>(get_imm_ADDI());
calc = static_cast<std::int32_t>(this->regs->getValue(rs1)) + imm;
this->regs->setValue(rd, calc);
this->logger->debug("{} ns. PC: 0x{:x}. C.ADDI: x{:d} + {} -> x{:d}(0x{:x})",
sc_core::sc_time_stamp().value(),
this->regs->getPC(), rs1, imm, rd, calc);
return true;
}
bool Exec_C_JALR() {
std::uint32_t mem_addr = 0;
unsigned int rd, rs1;
std::uint32_t new_pc, old_pc;
rd = 1;
rs1 = get_rs1();
old_pc = static_cast<std::int32_t>(this->regs->getPC());
this->regs->setValue(rd, old_pc + 2);
new_pc = static_cast<std::int32_t>((this->regs->getValue(rs1) + mem_addr) & 0xFFFFFFFE);
this->regs->setPC(new_pc);
this->logger->debug("{} ns. PC: 0x{:x}. C.JALR: x{:d} <- 0x{:x} PC <- 0xx{:x}",
sc_core::sc_time_stamp().value(),
this->regs->getPC(),
rd, old_pc + 4, new_pc);
return true;
}
bool Exec_C_LW() {
std::uint32_t mem_addr;
unsigned int rd, rs1;
std::int32_t imm;
std::uint32_t data;
rd = get_rdp();
rs1 = get_rs1p();
imm = get_imm_L();
mem_addr = imm + this->regs->getValue(rs1);
data = this->mem_intf->readDataMem(mem_addr, 4);
this->perf->dataMemoryRead();
this->regs->setValue(rd, static_cast<std::int32_t>(data));
this->logger->debug("{} ns. PC: 0x{:x}. C.LW: x{:d}(0x{:x}) + {:d} (@0x{:x}) -> {:d} (0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs1, this->regs->getValue(rs1), imm, mem_addr, rd, data);
return true;
}
bool Exec_C_SW() {
std::uint32_t mem_addr;
unsigned int rs1, rs2;
std::int32_t imm;
std::uint32_t data;
rs1 = get_rs1p();
rs2 = get_rs2p();
imm = get_imm_L();
mem_addr = imm + this->regs->getValue(rs1);
data = this->regs->getValue(rs2);
this->mem_intf->writeDataMem(mem_addr, data, 4);
this->perf->dataMemoryWrite();
this->logger->debug("{} ns. PC: 0x{:x}. C.SW: x{:d}(0x{:x}) -> x{:d} + 0x{:x}(@0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rs2, data, rs1, imm, mem_addr);
return true;
}
bool Exec_C_JAL(int m_rd) {
std::int32_t mem_addr;
unsigned int rd;
std::uint32_t new_pc, old_pc;
rd = m_rd;
mem_addr = get_imm_J();
old_pc = static_cast<std::int32_t>(this->regs->getPC());
new_pc = old_pc + mem_addr;
this->regs->setPC(new_pc);
old_pc = old_pc + 2;
this->regs->setValue(rd, old_pc);
this->logger->debug("{} ns. PC: 0x{:x}. C.JAL: x{:d} <- 0x{:x}. PC + 0x{:x} -> PC (0x{:x})",
sc_core::sc_time_stamp().value(), this->regs->getPC(),
rd, old_pc, mem_addr, new_pc);
return true;
}
bool Exec_C_EBREAK() {
this->logger->debug("C.EBREAK");
std::cout << "\n" << "C.EBRAK Instruction called, dumping information"
<< "\n";
this->regs->dump();
std::cout << "Simulation time " << sc_core::sc_time_stamp() << "\n";
this->perf->dump();
sc_core::sc_stop();
return true;
}
bool process_instruction(Instruction &inst, bool *breakpoint) {
bool PC_not_affected = true;
*breakpoint = false;
this->setInstr(inst.getInstr());
switch (decode()) {
case OP_C_ADDI4SPN:
PC_not_affected = Exec_C_ADDI4SPN();
break;
case OP_C_LW:
Exec_C_LW();
break;
case OP_C_SW:
Exec_C_SW();
break;
case OP_C_ADDI:
Exec_C_ADDI();
break;
case OP_C_JAL:
Exec_C_JAL(1);
PC_not_affected = false;
break;
case OP_C_J:
Exec_C_JAL(0);
PC_not_affected = false;
break;
case OP_C_LI:
Exec_C_LI();
break;
case OP_C_SLLI:
Exec_C_SLLI();
break;
case OP_C_LWSP:
Exec_C_LWSP();
break;
case OP_C_JR:
Exec_C_JR();
PC_not_affected = false;
break;
case OP_C_MV:
Exec_C_MV();
break;
case OP_C_JALR:
Exec_C_JALR();
PC_not_affected = false;
break;
case OP_C_ADD:
Exec_C_ADD();
break;
case OP_C_SWSP:
Exec_C_SWSP();
break;
case OP_C_ADDI16SP:
Exec_C_ADDI16SP();
break;
case OP_C_BEQZ:
Exec_C_BEQZ();
PC_not_affected = false;
break;
case OP_C_BNEZ:
Exec_C_BNEZ();
PC_not_affected = false;
break;
case OP_C_SRLI:
Exec_C_SRLI();
break;
case OP_C_SRAI:
Exec_C_SRAI();
break;
case OP_C_ANDI:
Exec_C_ANDI();
break;
case OP_C_SUB:
Exec_C_SUB();
break;
case OP_C_XOR:
Exec_C_XOR();
break;
case OP_C_OR:
Exec_C_OR();
break;
case OP_C_AND:
Exec_C_AND();
break;
case OP_C_EBREAK:
Exec_C_EBREAK();
std::cout << "C_EBREAK" << std::endl;
*breakpoint = true;
break;
[[unlikely]] default:
std::cout << "C instruction not implemented yet" << "\n";
inst.dump();
this->NOP();
break;
}
return PC_not_affected;
}
};
}
#endif