2019-08-19 15:53:10 +08:00
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
import numpy as np
|
|
|
|
import torchvision.models as models
|
|
|
|
from torchvision import datasets, transforms
|
|
|
|
import torchvision
|
|
|
|
import torch.optim as optim
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch
|
|
|
|
import os
|
|
|
|
import utils as utils
|
2019-09-17 23:20:24 +08:00
|
|
|
from tqdm import tqdm
|
2019-08-19 15:53:10 +08:00
|
|
|
|
|
|
|
|
2019-08-23 23:27:45 +08:00
|
|
|
def train(model, train_loader, optimizer, epoch=0):
|
2019-08-19 15:53:10 +08:00
|
|
|
model.train()
|
2019-11-28 21:06:06 +08:00
|
|
|
totalsize = train_loader.batch_sampler.sampler.num_samples
|
|
|
|
batchsize = int(totalsize / train_loader.batch_size / 5)+1
|
|
|
|
pbar = tqdm(totalsize)
|
2019-08-19 15:53:10 +08:00
|
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
2019-08-23 23:27:45 +08:00
|
|
|
data = utils.SetDevice(data)
|
|
|
|
target = utils.SetDevice(target)
|
2019-08-19 15:53:10 +08:00
|
|
|
optimizer.zero_grad()
|
|
|
|
output = model(data)
|
|
|
|
loss = F.nll_loss(output, target)
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
2019-09-17 23:20:24 +08:00
|
|
|
pbar.update(train_loader.batch_size)
|
2019-08-23 23:27:45 +08:00
|
|
|
if batch_idx % batchsize == 0 and batch_idx > 0:
|
2019-09-17 23:20:24 +08:00
|
|
|
pbar.set_description("Loss:"+str(loss.item()))
|
|
|
|
pbar.close()
|
2019-08-19 15:53:10 +08:00
|
|
|
|
2019-08-23 23:27:45 +08:00
|
|
|
def test(model, test_loader):
|
2019-08-19 15:53:10 +08:00
|
|
|
with torch.no_grad():
|
|
|
|
model.eval()
|
|
|
|
test_loss = 0
|
|
|
|
correct = 0
|
|
|
|
for data, target in test_loader:
|
2019-08-23 23:27:45 +08:00
|
|
|
data = utils.SetDevice(data)
|
|
|
|
target = utils.SetDevice(target)
|
2019-08-19 15:53:10 +08:00
|
|
|
output = model(data)
|
|
|
|
# sum up batch loss
|
|
|
|
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
|
|
|
# get the index of the max log-probability
|
|
|
|
pred = output.max(1, keepdim=True)[1]
|
|
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
2019-08-23 23:27:45 +08:00
|
|
|
accu = 100. * correct / len(test_loader.dataset)
|
2019-09-17 23:20:24 +08:00
|
|
|
# print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
|
|
|
|
# .format(test_loss, correct, len(test_loader.dataset), accu))
|
2019-08-23 23:27:45 +08:00
|
|
|
return accu
|
2019-09-17 23:20:24 +08:00
|
|
|
|
|
|
|
|
|
|
|
def TrainEpochs(model, traindata, optimizer, testdata, epoch=100,testepoch=10, line=None):
|
|
|
|
epochbar = tqdm(total=epoch)
|
|
|
|
for i in range(epoch):
|
|
|
|
train(model, traindata, optimizer, epoch=i)
|
|
|
|
if line and i % testepoch == 0 and i > 0:
|
|
|
|
line.AppendData(test(model, testdata))
|
|
|
|
epochbar.update(1)
|
|
|
|
epochbar.close()
|