refine Search Weight calculater time.

This commit is contained in:
colin 2019-09-30 18:33:47 +08:00
parent 76c9b7f05e
commit 130a6942b9
9 changed files with 70 additions and 45 deletions

View File

@ -28,7 +28,7 @@ from tools import utils, Train, Loader, WebVisual
import EvaluatorUnsuper
batchsize = 128
batchsize = 64
# model = utils.SetDevice(Model.Net5Grad35())
# model = utils.SetDevice(Model.Net31535())
@ -36,6 +36,9 @@ model = utils.SetDevice(Model.Net3Grad335())
# model = utils.SetDevice(Model.Net3())
layers = model.PrintLayer()
layer = 0
# model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
@ -53,8 +56,27 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
# a = []
# for batch_idx, (data, target) in enumerate(traindata):
# a = torch.jit.trace(model, data)
# break
# print(a.graph)
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=32, Interation=10)
# np.save("WeightSearch.npy", weight)
weight = np.load(CurrentPath+"WeightSearch.npy")
utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
# weight = np.load(CurrentPath+"WeightSearch.npy")
# bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,128,100000)
# np.save(CurrentPath+"bestweightSearch.npy", bestweight)
@ -68,11 +90,12 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
# weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata, NumTrain=5000)
# np.save("WeightTrain.npy", weight)
weight = np.load(CurrentPath+"WeightTrain.npy")
bestweight, index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model, layer, weight, traindata, databatchs=128, interation=1000000)
np.save(CurrentPath+"bestweightTrain.npy", bestweight)
bestweight = np.load(CurrentPath+"bestweightTrain.npy")
utils.NumpyToImage(bestweight, CurrentPath+"image")
# utils.NumpyToImage(bestweight, CurrentPath+"image",title="TrainWeight")
# weight = np.load(CurrentPath+"WeightTrain.npy")
# bestweight, index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model, layer, weight, traindata, databatchs=64, interation=1000000)
# np.save(CurrentPath+"bestweightTrain.npy", bestweight)
# bestweight = np.load(CurrentPath+"bestweightTrain.npy")
# utils.NumpyToImage(bestweight, CurrentPath+"image")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
# utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")

View File

@ -25,72 +25,74 @@ import Model as Model
from tools import utils, Train, Loader
def GetScore(netmodel,layer,SearchLayer,DataSet,Interation=-1):
def GetScore(netmodel,layer,SearchLayer,DataSet):
netmodel.eval()
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
layer = layer-1
# layerout = []
# layerint = []
# def getnet(self, input, output):
# layerout.append(output)
# layerint.append(input)
# handle = netmodel.features[layer].register_forward_hook(getnet)
# netmodel.ForwardLayer(data,layer)
# output = layerout[0][:,:,:,:]
# handle.remove()
for batch_idx, (data, target) in enumerate(DataSet):
data = utils.SetDevice(data)
target = utils.SetDevice(target)
output = netmodel.ForwardLayer(data,layer)
output = SearchLayer(output)
data.detach()
target.detach()
# for data in DataSet:
output = netmodel.ForwardLayer(DataSet,layer)
output = SearchLayer(output)
output = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
sample = torch.cat((sample,output),1)
output = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
sample = torch.cat((sample,output),1)
if Interation > 0 and batch_idx >= (Interation-1):
break
sample_mean=torch.mean(sample,dim=1,keepdim=True)
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
dat2 = (sample - sample_mean)/dat1
dat2 = torch.mean(dat2 * dat2,dim=1)
return dat2.cpu().detach().numpy()
def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChannelRatio=500, SearchChannelRatio=1, Interation=10):
def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChannel=4000, SearchChannelRatio=1, Interation=10):
interationbar = tqdm(total=NumSearch)
tl = model.features[layer]
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * SearchChannelRatio, tl.kernel_size,
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
newlayer = utils.SetDevice(newlayer)
newchannels = tl.out_channels * SaveChannelRatio
newweightshape = list(newlayer.weight.data.shape)
newweightshape.insert(0,NumSearch)
minactive = np.empty((0))
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
minweight = np.empty([0,newweightshape[-3],newweightshape[-2],newweightshape[-1]])
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
dataset = []
for batch_idx, (data, target) in enumerate(dataloader):
data = utils.SetDevice(data)
target = utils.SetDevice(target)
dataset.append(data)
if Interation > 0 and batch_idx >= (Interation-1):
break
dataset = torch.cat(dataset,0)
model.eval()
for i in range(NumSearch):
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight[i]))
score = GetScore(model, layer, newlayer, dataloader, Interation)
output = model.ForwardLayer(dataset,layer-1)
output = newlayer(output)
output = torch.reshape(output.transpose(0,1),(newlayer.out_channels,-1))
sample_mean=torch.mean(output,dim=1,keepdim=True)
dat1 = torch.mean(torch.abs(output - sample_mean),dim=1,keepdim=True)
dat2 = (output - sample_mean)/dat1
dat2 = torch.mean(dat2 * dat2,dim=1)
score = dat2.cpu().detach().numpy()
# score = GetScore(model, layer, newlayer, dataset)
minactive = np.append(minactive, score)
minweight = np.concatenate((minweight, newweight))
minweight = np.concatenate((minweight, newweight[i]))
index = minactive.argsort()
minactive = minactive[index[0:newchannels]]
minweight = minweight[index[0:newchannels]]
print("search random :" + str(i))
minactive = minactive[index[0:SaveChannel]]
minweight = minweight[index[0:SaveChannel]]
if i % (NumSearch/10) == 0:
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
interationbar.update(1)
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
interationbar.close()
return minweight
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
@ -227,4 +229,4 @@ def CrossDistanceOfKernel(k1, k2, BatchSize1=1, BatchSize2=1):
leftshape[0] = -1
left = left.reshape(leftshape)
return DistanceOfKernel(right, left, left.shape[0])
return DistanceOfKernel(right, left, left.shape[0])

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.