Add Directed search 8 weights instead of work with two steps.
This commit is contained in:
parent
fa7a066b87
commit
418e79df60
|
@ -44,31 +44,42 @@ model.PrintLayer()
|
|||
|
||||
|
||||
|
||||
# traindata, testdata = Loader.MNIST(batchsize)
|
||||
traindata, testdata = Loader.MNIST(batchsize, resize=7)
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=False)
|
||||
# traindata, testdata = Loader.MNIST(batchsize, shuffle=True,)
|
||||
traindata, testdata = Loader.MNIST(batchsize, shuffle=True, resize=7)
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, shuffle=True, style="Vertical")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, shuffle=True, style="Horizontal")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, shuffle=True, style="VerticalOneLine")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, shuffle=True, style="VerticalZebra")
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize, shuffle=True)
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize, shuffle=True, num_workers=0, shuffle=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# weight,active = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=500000, SearchChannelRatio=32, Interation=5)
|
||||
# np.save("WeightSearch.npy", weight)
|
||||
weight = np.load(CurrentPath+"WeightSearch.npy")
|
||||
utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
|
||||
weight = np.load(CurrentPath+"WeightSearch.npy")
|
||||
# weight = weight[0:256]
|
||||
bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,32,4000000)
|
||||
np.save(CurrentPath+"bestweightSearch.npy", bestweight)
|
||||
bestweight = np.load(CurrentPath+"bestweightSearch.npy")
|
||||
utils.NumpyToImage(bestweight, CurrentPath+"image",title="SearchWerightBest")
|
||||
#weight,active = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=500000, SearchChannelRatio=32, Interation=50)
|
||||
#np.save("WeightSearch.npy", weight)
|
||||
# weight = np.load(CurrentPath+"WeightSearch.npy")
|
||||
# utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
|
||||
# weight = np.load(CurrentPath+"WeightSearch.npy")
|
||||
# # weight = weight[0:256]
|
||||
# bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,32,20000000)
|
||||
# np.save(CurrentPath+"bestweightSearch.npy", bestweight)
|
||||
# bestweight = np.load(CurrentPath+"bestweightSearch.npy")
|
||||
# utils.NumpyToImage(bestweight, CurrentPath+"image",title="SearchWerightBest")
|
||||
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
|
||||
# utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
bestweight = EvaluatorUnsuper.UnsuperLearnSearchBestWeight(model,layer,traindata,32,20,250000)
|
||||
np.save(CurrentPath+"bestweightEntropySearch.npy", bestweight)
|
||||
utils.NumpyToImage(bestweight, CurrentPath+"image",title="EntropySearchWerightBest")
|
||||
EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
|
||||
utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
|
||||
utils.SaveModel(model,CurrentPath+"/checkpointEntropySearch.pkl")
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@ from PIL import Image
|
|||
import random
|
||||
import cv2
|
||||
from tqdm import tqdm
|
||||
import threading
|
||||
|
||||
|
||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
||||
|
@ -134,7 +135,8 @@ def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannel
|
|||
print("search :" + str(i))
|
||||
return minweight
|
||||
|
||||
def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=128,interation=10000):
|
||||
# search best weight from weight input
|
||||
def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=128, interation=10000):
|
||||
interationbar = tqdm(total=interation)
|
||||
weight = weight.astype("float32")
|
||||
netmodel.eval()
|
||||
|
@ -177,6 +179,76 @@ def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=1
|
|||
interationbar.close()
|
||||
return bestweight,indexs[sortindex]
|
||||
|
||||
# search best weight from random data
|
||||
def UnsuperLearnSearchBestWeight(netmodel, layer, dataloader, databatchs=128, stepsize=1000, interation=1000):
|
||||
interationbar = tqdm(total=interation)
|
||||
forwardlayer = layer -1
|
||||
bestweight = []
|
||||
bestentropy = 100.0
|
||||
netmodel.eval()
|
||||
tl = netmodel.features[layer]
|
||||
outchannels = tl.out_channels
|
||||
newlayer = nn.Conv2d(tl.in_channels, stepsize, tl.kernel_size,
|
||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||
newlayer = utils.SetDevice(newlayer)
|
||||
|
||||
# pre load train data for speed up.
|
||||
datas = []
|
||||
for batch_idx, (data, target) in enumerate(dataloader):
|
||||
datas.append(utils.SetDevice(data))
|
||||
if batch_idx >= databatchs-1:
|
||||
break
|
||||
# pre cal layer input for speed up.
|
||||
datasnetout = []
|
||||
for d in datas:
|
||||
datasnetout.append(netmodel.ForwardLayer(d,forwardlayer))
|
||||
datasnetout = torch.cat(datasnetout)
|
||||
# gen shift const data for histc
|
||||
shift = []
|
||||
for i in range(outchannels):
|
||||
shift.append(1<<i)
|
||||
shift = utils.SetDevice(torch.from_numpy(np.array(shift).astype("uint8")))
|
||||
|
||||
for j in range(interation):
|
||||
newweightshape = list(newlayer.weight.data.shape)
|
||||
newweightshape[0] = stepsize
|
||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||
newweight = newweight.reshape((-1,newweightshape[-1]*newweightshape[-2]))
|
||||
newweight = np.swapaxes(newweight,0,1)-np.mean(newweight,-1)
|
||||
newweight = np.swapaxes(newweight,0,1).reshape(newweightshape)
|
||||
|
||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
outputs = newlayer(datasnetout).transpose(0,1)
|
||||
samplesize = stepsize*stepsize
|
||||
indexs = np.random.randint(0,stepsize,samplesize*outchannels).reshape(samplesize,-1)
|
||||
# 1000 8 4096 5 5
|
||||
outputs = outputs[indexs]
|
||||
# 102400 1000 8
|
||||
reshaped = outputs.reshape(samplesize, outchannels, -1).permute(2, 0, 1)
|
||||
# 1000 8
|
||||
meaned = reshaped.mean(0)
|
||||
# 102400 1000
|
||||
bitted = ((reshaped > meaned)* shift).sum(2).type(torch.float32)
|
||||
|
||||
entropys = []
|
||||
for i in range(len(indexs)):
|
||||
histced = bitted[:,i].histc(256,0,255).type(torch.float32)
|
||||
histced = histced[histced>0]
|
||||
histced = histced/histced.sum()
|
||||
entropy = (histced.log2()*histced).sum()
|
||||
entropys.append(entropy.detach().cpu().numpy())
|
||||
|
||||
argmin = np.argmin(entropys)
|
||||
if entropys[argmin] < bestentropy:
|
||||
bestweight = newweight[indexs[argmin]]
|
||||
bestentropy = entropys[argmin]
|
||||
interationbar.update(1)
|
||||
interationbar.close()
|
||||
return bestweight
|
||||
|
||||
|
||||
|
||||
|
||||
def SetModelConvWeight(model, layer, weight):
|
||||
w = utils.SetDevice(torch.from_numpy(weight))
|
||||
model.features[layer].weight.data = w
|
||||
|
|
|
@ -65,8 +65,8 @@ class Net333(UniModule.ModuleBase):
|
|||
super(Net333, self).__init__()
|
||||
layers = []
|
||||
layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(8, 10, kernel_size=3,bias=False)]
|
||||
layers += [nn.Conv2d(8, 1, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(1, 10, kernel_size=3,bias=False)]
|
||||
self.features = nn.Sequential(*layers)
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
|
@ -78,8 +78,8 @@ class Net3Grad33(UniModule.ModuleBase):
|
|||
super(Net3Grad33, self).__init__()
|
||||
layers = []
|
||||
layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(8, 10, kernel_size=3,bias=False)]
|
||||
layers += [nn.Conv2d(8, 1, kernel_size=3,bias=False),nn.Sigmoid()]
|
||||
layers += [nn.Conv2d(1, 10, kernel_size=3,bias=False)]
|
||||
self.features = nn.Sequential(*layers)
|
||||
self.SetConvRequiresGrad(0,False)
|
||||
def forward(self, x):
|
||||
|
|
|
@ -25,7 +25,7 @@ sys.path.append(CurrentPath+'../')
|
|||
|
||||
import Model
|
||||
from tools import utils, Train, Loader, WebVisual
|
||||
|
||||
import EvaluatorUnsuper
|
||||
|
||||
batchsize = 128
|
||||
|
||||
|
@ -40,7 +40,7 @@ batchsize = 128
|
|||
|
||||
|
||||
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4, trainsize=5000)
|
||||
traindata, testdata = Loader.MNIST(batchsize, resize=7, trainsize=5000)
|
||||
traindata, testdata = Loader.MNIST(batchsize, resize=7, trainsize=200)
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalOneLine")
|
||||
|
@ -84,15 +84,24 @@ linePretrainTrain = WebVisual.Line(window, "PretrainTrain")
|
|||
|
||||
|
||||
|
||||
model = utils.SetDevice(Model.Net333())
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||
Train.TrainEpochs(model,traindata,optimizer,testdata,1000,15,lineNoPre)
|
||||
|
||||
|
||||
model = utils.SetDevice(Model.Net333())
|
||||
# bestweight = np.ones((model.features[0].weight.data.shape),dtype="float32")
|
||||
# EvaluatorUnsuper.SetModelConvWeight(model,0,bestweight)
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||
Train.TrainEpochs(model,traindata,optimizer,testdata,3000,10,lineNoPre)
|
||||
|
||||
|
||||
# model = utils.SetDevice(Model.Net3Grad33())
|
||||
# model = utils.LoadModel(model, CurrentPath+"/checkpointSearch.pkl")
|
||||
# optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||
# Train.TrainEpochs(model,traindata,optimizer,testdata,3000,10,linePretrainSearch)
|
||||
|
||||
model = utils.SetDevice(Model.Net3Grad33())
|
||||
model = utils.LoadModel(model, CurrentPath+"/checkpointSearch.pkl")
|
||||
model = utils.LoadModel(model, CurrentPath+"/checkpointEntropySearch.pkl")
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||
Train.TrainEpochs(model,traindata,optimizer,testdata,1000,15,linePretrainSearch)
|
||||
Train.TrainEpochs(model,traindata,optimizer,testdata,3000,10,linePretrainSearch)
|
||||
|
||||
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -34,8 +34,11 @@ def MNIST(batchsize=8, num_workers=0, shuffle=False, trainsize=0, resize=0):
|
|||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])), batch_size=batchsize, shuffle=shuffle, num_workers=num_workers, drop_last=True)
|
||||
train_loader.batch_sampler.sampler.num_samples = 50000
|
||||
print("Train Data size:"+str(trainsize)+" Shuffle:"+str(shuffle)+" BatchSize:"+str(batchsize))
|
||||
try:
|
||||
train_loader.batch_sampler.sampler.num_samples = trainsize
|
||||
test_loader.batch_sampler.sampler.num_samples = 10000
|
||||
finally:
|
||||
return train_loader, test_loader
|
||||
|
||||
def Cifar10(batchsize=8, num_workers=0, shuffle=False):
|
||||
|
|
Loading…
Reference in New Issue