start to creat 8 from 4000

This commit is contained in:
colin 2019-08-27 23:06:24 +08:00
parent d9df29f04a
commit 5220bf6885
12 changed files with 78 additions and 82 deletions

View File

@ -38,6 +38,8 @@ model = utils.SetDevice(Model.Net3Grad335())
# model = utils.SetDevice(Model.Net3()) # model = utils.SetDevice(Model.Net3())
layers = model.PrintLayer()
layer = 0
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl") model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
@ -54,28 +56,34 @@ model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True) traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
def GetSample(netmodel,layer,dataloader,iteration=-1): def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
netmodel.eval() netmodel.eval()
sample = utils.SetDevice(torch.empty((8,0))) sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
for batch_idx, (data, target) in enumerate(dataloader):
layer = layer-1
# layerout = []
# layerint = []
# def getnet(self, input, output):
# layerout.append(output)
# layerint.append(input)
# handle = netmodel.features[layer].register_forward_hook(getnet)
# netmodel.ForwardLayer(data,layer)
# output = layerout[0][:,:,:,:]
# handle.remove()
for batch_idx, (data, target) in enumerate(DataSet):
data = utils.SetDevice(data) data = utils.SetDevice(data)
target = utils.SetDevice(target) target = utils.SetDevice(target)
layerout = [] output = netmodel.ForwardLayer(data,layer)
layerint = [] output = SearchLayer(output)
def getnet(self, input, output):
layerout.append(output)
layerint.append(input)
handle = netmodel.features[layer].register_forward_hook(getnet)
netmodel.forwardLayer(data,layer=layer)
output = layerout[0][:,:,:,:]
handle.remove()
data.detach() data.detach()
target.detach() target.detach()
output = torch.reshape(output.transpose(0,1),(8,-1)) output = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
sample = torch.cat((sample,output),1) sample = torch.cat((sample,output),1)
if iteration > 0 and batch_idx >= (iteration-1): if Interation > 0 and batch_idx >= (Interation-1):
break break
sample_mean=torch.mean(sample,dim=1,keepdim=True) sample_mean=torch.mean(sample,dim=1,keepdim=True)
@ -106,45 +114,39 @@ def GetRandomSocre(netmodel,layer,dataloader,iteration=-1):
return np.array(score), newweight return np.array(score), newweight
def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch = 10000, ChannelRatio=1,Interation=10):
tl = model.features[layer]
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * ChannelRatio, tl.kernel_size,
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
newlayer = utils.SetDevice(newlayer)
ConvKernelToImage(model, 0, CurrentPath+"image") newchannels = tl.out_channels * ChannelRatio
newweightshape = list(newlayer.weight.data.shape)
layer = 0
weightshape = list(model.features[layer].weight.data.shape)
channels = weightshape[0]
weightshape[0] = 0
minactive = np.empty((0)) minactive = np.empty((0))
minweight = np.empty(weightshape) minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
for i in range(300000): for i in range(NumSearch):
score,weight = GetRandomSocre(model,layer,traindata,iteration=10) newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
score = GetSample(model, layer, newlayer, dataloader, Interation)
minactive = np.append(minactive, score) minactive = np.append(minactive, score)
minweight = np.concatenate((minweight, weight)) minweight = np.concatenate((minweight, newweight))
index = minactive.argsort() index = minactive.argsort()
minactive = minactive[index[0:channels]] minactive = minactive[index[0:newchannels]]
minweight = minweight[index[0:channels]] minweight = minweight[index[0:newchannels]]
print("search random :" + str(i)) print("search random :" + str(i))
if i % 10000 == 0: if i % (NumSearch/10) == 0:
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl") utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
# for i in range(minweight.shape[0]): UnsuperLearnConvWeight(model, layer, traindata, NumSearch=100000, ChannelRatio=8, Interation=10)
# a2 = minweight[i].reshape((minweight.shape[2],minweight.shape[3]))
# a2min = np.min(a2)
# a2max = np.max(a2)
# a2 = (a2 - a2min)*255.0/(a2max-a2min)
# a2 = a2.astype(int)
# cv2.imwrite(CurrentPath+"/image/c"+str(i)+"_"+str(minactive[i])+".png",a2)
ConvKernelToImage(model, layer, CurrentPath+"image")
model.features[layer].weight.data=utils.SetDevice(torch.from_numpy(minweight))
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl") utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
print("save model sucess") print("save model sucess")

View File

@ -31,6 +31,12 @@ batchsize = 128
# model = utils.SetDevice(Model.Net535())
# model = utils.SetDevice(Model.Net5Grad35())
# model = utils.SetDevice(Model.Net31535())
# optimizer = optim.Adam(model.parameters(), lr=0.01)
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4) # traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical") # traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal") # traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
@ -39,13 +45,7 @@ batchsize = 128
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500) traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500)
# WebVisual.InitVisdom()
WebVisual.InitVisdom()
window = WebVisual.LineWin() window = WebVisual.LineWin()
lineNoPre = WebVisual.Line("NoPre") lineNoPre = WebVisual.Line("NoPre")
linePretrain = WebVisual.Line("Pretrain") linePretrain = WebVisual.Line("Pretrain")
@ -55,42 +55,26 @@ linePretrain = WebVisual.Line("Pretrain")
# model = utils.SetDevice(Model.Net535())
# model = utils.SetDevice(Model.Net5Grad35())
# model = utils.SetDevice(Model.Net31535())
# model = utils.SetDevice(Model.Net3335()) # model = utils.SetDevice(Model.Net3335())
model = utils.SetDevice(Model.Net3Grad335()) model = utils.SetDevice(Model.Net3Grad335())
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
# model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
optimizer = optim.SGD(model.parameters(), lr=0.1) optimizer = optim.SGD(model.parameters(), lr=0.1)
# optimizer = optim.Adam(model.parameters(), lr=0.01) for i in range(1000):
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
for i in range(2000):
Train.train(model,traindata,optimizer,epoch=i) Train.train(model,traindata,optimizer,epoch=i)
window.AppendData(linePretrain,Train.test(model,testdata)) window.AppendData(linePretrain,Train.test(model,testdata))
model = utils.SetDevice(Model.Net3335()) model = utils.SetDevice(Model.Net3335())
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
optimizer = optim.SGD(model.parameters(), lr=0.1) optimizer = optim.SGD(model.parameters(), lr=0.1)
for i in range(2000): for i in range(1000):
Train.train(model, traindata, optimizer, epoch=i) Train.train(model, traindata, optimizer, epoch=i)
window.AppendData(lineNoPre, Train.test(model, testdata)) window.AppendData(lineNoPre, Train.test(model, testdata))
# utils.SaveModel(model,CurrentPath+"/checkpointSGDPreTrain.pkl") # utils.SaveModel(model,CurrentPath+"/checkpointSGDPreTrain.pkl")

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 B

View File

@ -20,7 +20,17 @@ class ModuleBase(nn.Module):
if b != None: if b != None:
self.features[layer].bias.requires_grad = requiregrad self.features[layer].bias.requires_grad = requiregrad
def forwardLayer(self, x, layer=0): def ForwardLayer(self, x, layer=0):
if layer < 0:
return x
layers = self.features[0:layer+1] layers = self.features[0:layer+1]
x = layers(x) x = layers(x)
return x
def PrintLayer(self):
names = []
i = 0
for l in self.features:
names.append(str(i)+' : '+str(l))
i = i+1
return names